Given:
\[
^nC_{r-1} = 36, \quad ^nC_r = 84, \quad ^nC_{r+1} = 126.
\]
Use the property:
\[
\frac{^nC_r}{^nC_{r-1}} = \frac{n - r + 1}{r}
\Rightarrow \frac{84}{36} = \frac{n - r + 1}{r}
\Rightarrow \frac{7}{3} = \frac{n - r + 1}{r}
\Rightarrow 7r = 3n - 3r + 3 \Rightarrow 10r = 3n + 3 \quad \cdots (1)
\]
Also:
\[
\frac{^nC_{r+1}}{^nC_r} = \frac{n - r}{r + 1}
\Rightarrow \frac{126}{84} = \frac{n - r}{r + 1}
\Rightarrow \frac{3}{2} = \frac{n - r}{r + 1}
\Rightarrow 3r + 3 = 2n - 2r \Rightarrow 5r = 2n - 3 \quad \cdots (2)
\]
Solving equations (1) and (2) simultaneously gives:
\[
r = 3, \quad n = 9.
\]
Hence:
\[
nr^2 = 9 \times 9 = 81.
\]