Given, $^{n-1}C_r=(k^2-3) \, ^nC{r+1}$
= $ \, \, \, \, \, \, \, \, \, \, \, ^{n-1}C_r=(k^2-3)\frac{n}{r+1} \, ^{n-1}C_r$
= $ \, \, \, \, \, \, \, \, \, \, \, k^2-3=\frac{r+1}{n}$
$\hspace20mm [since, n \ge r \Rightarrow \, \, \frac{r+1}{n} \le 1 \, and \, n,r >0]$
$\Rightarrow \, \, \, \, \, \, \, \, \, \, 0< k^2-3\le 1$
$\Rightarrow \, \, \, \, \, \, \, \, \, \, \, 3 < k^2 \le 4 \, \, \Rightarrow \, \, \, k \in [-2,-\sqrt 3) \cup (\sqrt 3,2)]$