We are asked to compute the divergence of the vector field \( \mathbf{a} \times (\mathbf{r} \times \mathbf{a}) \), where \( \mathbf{a} \) is a constant vector and \( \mathbf{r} \) is the position vector.
The vector triple product identity is given by:
\[ \mathbf{r} \times (\mathbf{a} \times \mathbf{b}) = (\mathbf{r} \cdot \mathbf{b}) \mathbf{a} - (\mathbf{r} \cdot \mathbf{a}) \mathbf{b} \]
Substitute \( \mathbf{b} = \mathbf{a} \) into the identity to simplify the cross product \( \mathbf{r} \times (\mathbf{a} \times \mathbf{a}) \). Since the cross product of any vector with itself is zero, we get:
\[ \mathbf{r} \times (\mathbf{a} \times \mathbf{a}) = \mathbf{0} \]
Thus, we need to compute the divergence of the expression \( \mathbf{a} \times (\mathbf{r} \times \mathbf{a}) \). Using the vector identity for the divergence of a cross product:
\[ \nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B}) \]
For a constant vector \( \mathbf{a} \), the divergence simplifies to:
\[ \text{div}[\mathbf{a} \times (\mathbf{r} \times \mathbf{a})] = 2a^2 \]
The correct answer is option (A), \( 2a^2 \).
The variance for continuous probability function \(f(x) = x^2 e^{-x}\) when \(x \ge 0\) is
Consider the loop transfer function \(\frac {K(s+6)}{(s+3)(s+5)}\). In the root locus diagram the centroid will be located at:
When nuclear radiations pass through, gas ionization is produced. This is the principle of which of the following detectors?
If \(f = \text{Tan}^{-1}(xy)\) then \((\frac{\partial f}{\partial x})_{(1,2)}\) = _____ .