Step 1: Using the perpendicularity condition.
Two vectors \( \mathbf{u} \) and \( \mathbf{v} \) are perpendicular if:
\[
\mathbf{u} \cdot \mathbf{v} = 0
\]
Setting \( \mathbf{u} = \mathbf{a} + \lambda \mathbf{b} \) and \( \mathbf{v} = \mathbf{a} - \lambda \mathbf{b} \), we compute their dot product:
\[
(\mathbf{a} + \lambda \mathbf{b}) \cdot (\mathbf{a} - \lambda \mathbf{b}) = 0
\]
Step 2: Expanding the dot product.
Using distributive property,
\[
\mathbf{a} \cdot \mathbf{a} - \lambda \mathbf{a} \cdot \mathbf{b} + \lambda \mathbf{b} \cdot \mathbf{a} - \lambda^2 \mathbf{b} \cdot \mathbf{b} = 0
\]
Step 3: Substituting given values.
\[
|\mathbf{a}|^2 - \lambda^2 |\mathbf{b}|^2 = 0
\]
Since \( |\mathbf{a}| = 3 \) and \( |\mathbf{b}| = 4 \),
\[
9 - \lambda^2 (16) = 0
\]
Step 4: Solving for \( \lambda \).
\[
\lambda^2 = \frac{9}{16}
\]
\[
\lambda = \frac{3}{4}
\]
Thus, the correct answer is (B).