8
-6
Given vectors:
\( \mathbf{a} = 2\hat{i} + 2\hat{j} + 3\hat{k} \)
\( \mathbf{b} = -\hat{i} + 2\hat{j} + \hat{k} \)
\( \mathbf{c} = 3\hat{i} + \hat{j} \)
Let \( \mathbf{r} = \mathbf{a} + \lambda \mathbf{b} \)
\( \mathbf{r} = (2 - \lambda)\hat{i} + (2 + 2\lambda)\hat{j} + (3 + \lambda)\hat{k} \)
Since \( \mathbf{r} \perp \mathbf{c} \), their dot product is zero:
\( \mathbf{r} \cdot \mathbf{c} = 0 \)
Compute the dot product:
\( [(2 - \lambda) \cdot 3] + [(2 + 2\lambda) \cdot 1] + [(3 + \lambda) \cdot 0] = 0 \)
Simplify:
\( 3(2 - \lambda) + (2 + 2\lambda) = 0 \)
\( 6 - 3\lambda + 2 + 2\lambda = 0 \)
\( 8 - \lambda = 0 \Rightarrow \lambda = 8 \)
Final Answer:
\( \boxed{\lambda = 8} \)
Show that the line passing through the points A $(0, -1, -1)$ and B $(4, 5, 1)$ intersects the line joining points C $(3, 9, 4)$ and D $(-4, 4, 4)$.