Question:

If \( \mathbf{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}, \mathbf{b} = -\hat{i} + 2\hat{j} + \hat{k} \) and \( \mathbf{c} = 3\hat{i} + \hat{j} \) are the vectors such that \( \mathbf{a} + \lambda \mathbf{b} \) is perpendicular to \( \mathbf{c} \), then the value of \( \lambda \) is:

Show Hint

In vector problems involving dot products and perpendicular vectors, remember that the dot product of two perpendicular vectors is zero. Use this property to solve the problem step by step.
Updated On: May 3, 2025
  • 6
  • 8
     

  • -6
     

  • -8
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Given vectors: 

\( \mathbf{a} = 2\hat{i} + 2\hat{j} + 3\hat{k} \) 
\( \mathbf{b} = -\hat{i} + 2\hat{j} + \hat{k} \) 
\( \mathbf{c} = 3\hat{i} + \hat{j} \)

Let \( \mathbf{r} = \mathbf{a} + \lambda \mathbf{b} \)

\( \mathbf{r} = (2 - \lambda)\hat{i} + (2 + 2\lambda)\hat{j} + (3 + \lambda)\hat{k} \)

Since \( \mathbf{r} \perp \mathbf{c} \), their dot product is zero:

\( \mathbf{r} \cdot \mathbf{c} = 0 \)

Compute the dot product:

\( [(2 - \lambda) \cdot 3] + [(2 + 2\lambda) \cdot 1] + [(3 + \lambda) \cdot 0] = 0 \)

Simplify:

\( 3(2 - \lambda) + (2 + 2\lambda) = 0 \)

\( 6 - 3\lambda + 2 + 2\lambda = 0 \)

\( 8 - \lambda = 0 \Rightarrow \lambda = 8 \)

Final Answer:

\( \boxed{\lambda = 8} \)

Was this answer helpful?
1
7