Step 1: Substitute the values of \( m \) and \( n \).
We are given that \( m = 5 \) and \( n = m + 7 \). Therefore,
\[
n = 5 + 7 = 12.
\]
Step 2: Apply the formula.
We need to find the value of \( \sqrt{m^2 + n^2} \). Substituting \( m = 5 \) and \( n = 12 \), we get:
\[
\sqrt{m^2 + n^2} = \sqrt{5^2 + 12^2} = \sqrt{25 + 144} = \sqrt{169}.
\]
Step 3: Solve the square root.
\[
\sqrt{169} = 13.
\]
Step 4: Conclusion.
Therefore, the value of \( \sqrt{m^2 + n^2} \) is 13.