The correct answer is (C): \(\frac{2}{A+B-3}\)
\(log_a\;5+log_a\;3+log_a\;2 = A\)
\(log_a\;5+log_a\;3 = A-3\)
But \(log_a\;5-log_a\;3 = -B\)
Hence \(2\;log_a\;3 = A+B-3\)
\(log_3\;a = \frac{2}{A+B-3}\)
The product of all solutions of the equation \(e^{5(\log_e x)^2 + 3 = x^8, x > 0}\) , is :