Given:
\[ \log_4 5 = (\log_4 y)(\log_6 \sqrt{5}) \]
Using the change of base formula:
\[ \log_a b = \frac{\log b}{\log a} \]
\[ \log_6 \sqrt{5} = \frac{\log \sqrt{5}}{\log 6} \quad \text{and} \quad \log \sqrt{5} = \frac{1}{2} \log 5 \]
So, \[ \log_6 \sqrt{5} = \frac{1}{2} \cdot \frac{\log 5}{\log 6} \]
Now substitute into the original equation: \[ \log_4 5 = (\log_4 y) \cdot \left(\frac{1}{2} \cdot \frac{\log 5}{\log 6}\right) \]
Use change of base again for the left-hand side: \[ \log_4 5 = \frac{\log 5}{\log 4} \]
Now the equation becomes: \[ \frac{\log 5}{\log 4} = (\log_4 y) \cdot \frac{1}{2} \cdot \frac{\log 5}{\log 6} \]
Cancel \( \log 5 \) from both sides: \[ \frac{1}{\log 4} = \frac{1}{2 \log 6} \cdot \log_4 y \]
Multiply both sides by \( 2 \log 6 \): \[ \frac{2 \log 6}{\log 4} = \log_4 y \]
Now express this as a single logarithm: \[ \log_4 y = \frac{\log 4}{\log 36} \quad \text{since} \quad (2 \log 6 = \log 36) \]
Using change of base again: \[ \log_4 y = \frac{\log 4}{\log 36} = \log_{36} 4 \Rightarrow y = 36 \]
∴ The value of \( y \) is 36.
Given: \(\log_4 5 = (\log_4 y)(\log_6 \sqrt{5})\)
Taking the reciprocal of \(\log_6 \sqrt{5}\) to move it to the other side:
\(\frac{\log_4 5}{\log_6 \sqrt{5}} = \log_4 y\)
Using change of base: \(\log_6 \sqrt{5} = \frac{\log_5 \sqrt{5}}{\log_5 6} = \frac{1/2}{\log_5 6} = \frac{1}{2\log_5 6}\)
So, \(\log_4 y = \log_4 5 \cdot 2 \log_5 6\)
Now, \(\log_4 5 \cdot \log_5 6 = \log_4 6\) (by change of base identity)
Therefore, \(\log_4 y = 2 \log_4 6 = \log_4 6^2 = \log_4 36\)
Hence, \(y = 36\)
The product of all solutions of the equation \(e^{5(\log_e x)^2 + 3 = x^8, x > 0}\) , is :
When $10^{100}$ is divided by 7, the remainder is ?