Given:
\(\log_2 \left[ 3 + \log_3 \left( 4 + \log_4 (x-1) \right) \right] - 2 = 0\)
Now, rearranging and simplifying:
\(\log_2 \left[ 3 + \log_3 \left( 4 + \log_4 (x-1) \right) \right] = 2\)
Using the properties of logarithm: \(3 + \log_3 \left( 4 + \log_4 (x-1) \right) = 2^2\)
\(3 + \log_3 \left( 4 + \log_4 (x-1) \right) = 4\)
Subtracting 3 from both sides:
\(\log_3 \left( 4 + \log_4 (x-1) \right) = 1\)
This implies: \(4 + \log_4 (x-1) = 3\)
\(\log_4 (x-1) = -1\)
Now, using the properties of logarithm:
\(x-1 = 4^{-1}\)
\(x-1 = \frac{1}{4}\)
Now, adding 1 to both sides:
\(x = \frac{5}{4}\)
To find \(4x\): \(\ 4x = 4 \times \frac{5}{4} = 5\)
The product of all solutions of the equation \(e^{5(\log_e x)^2 + 3 = x^8, x > 0}\) , is :