We are given:
\(\log_2 \left[ 3 + \log_3 \left( 4 + \log_4 (x - 1) \right) \right] - 2 = 0\)
Step 1: Bring 2 to RHS:
\(\log_2 \left[ 3 + \log_3 \left( 4 + \log_4 (x - 1) \right) \right] = 2\)
Step 2: Convert logarithmic to exponential form:
\(3 + \log_3 \left( 4 + \log_4 (x - 1) \right) = 2^2 = 4\)
Step 3: Subtract 3:
\(\log_3 \left( 4 + \log_4 (x - 1) \right) = 1\)
Step 4: Convert logarithmic to exponential again:
\(4 + \log_4 (x - 1) = 3^1 = 3\)
Step 5: Subtract 4:
\(\log_4 (x - 1) = -1\)
Step 6: Convert to exponential:
\(x - 1 = 4^{-1} = \frac{1}{4}\)
Step 7: Solve for x:
\(x = \frac{1}{4} + 1 = \frac{5}{4}\)
Step 8: Find \(4x\):
\(4x = 4 \times \frac{5}{4} = \boxed{5}\)
The product of all solutions of the equation \(e^{5(\log_e x)^2 + 3 = x^8, x > 0}\) , is :
When $10^{100}$ is divided by 7, the remainder is ?