We are given the equation \( \log_e y = 3 \sin^{-1} x \). We need to find \( (1 - x^2) y'' - xy' \) at \( x = \frac{1}{2} \).
Start by differentiating \( y = e^{3 \sin^{-1} x} \):
\[ \frac{1}{y} \cdot y' = 3 \cdot \frac{1}{\sqrt{1 - x^2}} \implies y' = \frac{3y}{\sqrt{1 - x^2}} \]At \( x = \frac{1}{2} \), we get:
\[ y' = \frac{3e^{\frac{\pi}{6}}}{\sqrt{3}} = \frac{2\sqrt{3}e^{\frac{\pi}{6}}}{3} \]Now differentiate \( y' \) to get \( y'' \):
\[ y'' = \frac{d}{dx} \left( \frac{3y}{\sqrt{1 - x^2}} \right) \]Using the quotient rule, we get:
\[ y'' = 3 \left( \frac{\sqrt{1 - x^2} \cdot y' - y \cdot \left( -\frac{x}{\sqrt{1 - x^2}} \right)}{(1 - x^2)} \right) \]Substitute the expression for \( y' \):
At \( x = \frac{1}{2} \), we substitute values for \( y \) and \( y' \):
\[ (1 - x^2) y'' = 3 \left( 3e^{\frac{\pi}{6}} + \frac{e^{\frac{\pi}{6}}}{\sqrt{3}} \right) = 3e^{\frac{\pi}{6}} \left( 3 + \frac{1}{\sqrt{3}} \right) \]Now, calculate \( (1 - x^2) y'' - xy' \):
\[ (1 - x^2) y'' - xy' = 3e^{\frac{\pi}{6}} \left( 3 + \frac{1}{\sqrt{3}} \right) - \frac{1}{2} \times \frac{2\sqrt{3}e^{\frac{\pi}{6}}}{3} \]After simplifying:
\[ (1 - x^2) y'' - xy' = 9e^{\frac{\pi}{2}} \]Thus, the correct answer is:
Let \( f : \mathbb{R} \to \mathbb{R} \) be a twice differentiable function such that \( f(x + y) = f(x) f(y) \) for all \( x, y \in \mathbb{R} \). If \( f'(0) = 4a \) and \( f \) satisfies \( f''(x) - 3a f'(x) - f(x) = 0 \), where \( a > 0 \), then the area of the region R = {(x, y) | 0 \(\leq\) y \(\leq\) f(ax), 0 \(\leq\) x \(\leq\) 2\ is :
\( x \) is a peptide which is hydrolyzed to 2 amino acids \( y \) and \( z \). \( y \) when reacted with HNO\(_2\) gives lactic acid. \( z \) when heated gives a cyclic structure as below:
Statement-1: \( \text{ClF}_3 \) has 3 possible structures.
Statement-2: \( \text{III} \) is the most stable structure due to least lone pair-bond pair (lp-bp) repulsion.
Which of the following options is correct?
Consider the following graph between Rate Constant (K) and \( \frac{1}{T} \): Based on the graph, determine the correct order of activation energies \( E_{a1}, E_{a2}, \) and \( E_{a3} \).