We are given the equation \( \log_e y = 3 \sin^{-1} x \). We need to find \( (1 - x^2) y'' - xy' \) at \( x = \frac{1}{2} \).
Start by differentiating \( y = e^{3 \sin^{-1} x} \):
\[ \frac{1}{y} \cdot y' = 3 \cdot \frac{1}{\sqrt{1 - x^2}} \implies y' = \frac{3y}{\sqrt{1 - x^2}} \]At \( x = \frac{1}{2} \), we get:
\[ y' = \frac{3e^{\frac{\pi}{6}}}{\sqrt{3}} = \frac{2\sqrt{3}e^{\frac{\pi}{6}}}{3} \]Now differentiate \( y' \) to get \( y'' \):
\[ y'' = \frac{d}{dx} \left( \frac{3y}{\sqrt{1 - x^2}} \right) \]Using the quotient rule, we get:
\[ y'' = 3 \left( \frac{\sqrt{1 - x^2} \cdot y' - y \cdot \left( -\frac{x}{\sqrt{1 - x^2}} \right)}{(1 - x^2)} \right) \]Substitute the expression for \( y' \):
At \( x = \frac{1}{2} \), we substitute values for \( y \) and \( y' \):
\[ (1 - x^2) y'' = 3 \left( 3e^{\frac{\pi}{6}} + \frac{e^{\frac{\pi}{6}}}{\sqrt{3}} \right) = 3e^{\frac{\pi}{6}} \left( 3 + \frac{1}{\sqrt{3}} \right) \]Now, calculate \( (1 - x^2) y'' - xy' \):
\[ (1 - x^2) y'' - xy' = 3e^{\frac{\pi}{6}} \left( 3 + \frac{1}{\sqrt{3}} \right) - \frac{1}{2} \times \frac{2\sqrt{3}e^{\frac{\pi}{6}}}{3} \]After simplifying:
\[ (1 - x^2) y'' - xy' = 9e^{\frac{\pi}{2}} \]Thus, the correct answer is:
Let $ y(x) $ be the solution of the differential equation $$ x^2 \frac{dy}{dx} + xy = x^2 + y^2, \quad x > \frac{1}{e}, $$ satisfying $ y(1) = 0 $. Then the value of $ 2 \cdot \frac{(y(e))^2}{y(e^2)} $ is ________.