To solve the problem, we need to use logarithmic properties to simplify the given equation:
The equation given is:
\(\log_{64} x^2 + \log_8 \sqrt{y} + 3 \log_{512} (\sqrt{y} z) = 4\)
We will rewrite the logs in terms of base 2, since all bases 64, 8, and 512 are powers of 2:
Substitute these into the original equation:
\(\frac{1}{3} \log_{2} x + \frac{1}{6} \log_{2} y + \frac{1}{3} \log_{2} (\sqrt{y} z) = 4\)
Simplify further:
The term \(\log_{2} (\sqrt{y} z)\) becomes \(\log_{2} y^{1/2} + \log_{2} z = \frac{1}{2} \log_{2} y + \log_{2} z\). Substitute this back:
\(\frac{1}{3} \log_{2} x + \frac{1}{6} \log_{2} y + \frac{1}{3} \left(\frac{1}{2} \log_{2} y + \log_{2} z\right) = 4\)
Combine the terms:
\(\frac{1}{3} \log_{2} x + \frac{1}{6} \log_{2} y + \frac{1}{6} \log_{2} y + \frac{1}{3} \log_{2} z = 4\)
This simplifies to:
\(\frac{1}{3} \log_{2} x + \frac{1}{3} \log_{2} y + \frac{1}{3} \log_{2} z = 4\)
Now, multiply through by 3 to clear fractions:
\(\log_{2} x + \log_{2} y + \log_{2} z = 12\)
Using the property \(\log_{2} a + \log_{2} b + \log_{2} c = \log_{2} (abc)\), we have:
\(\log_{2} (xyz) = 12\)
Thus, \(xyz = 2^{12} = 4096\).
To find the minimum of \(x+y+z\) subject to \(xyz = 4096\), use the AM-GM inequality which states:
\(\frac{x+y+z}{3} \geq \sqrt[3]{xyz}\)
Thus:
\(\frac{x+y+z}{3} \geq \sqrt[3]{4096} = \sqrt[3]{2^{12}} = 8\)
Therefore, \(x+y+z \geq 24\).
However, calculating directly for minimum values, we find equality in AM-GM when \(x = y = z\):
Substitute \(x = y = z = k\) gives \(k^3 = 4096\), so \(k = \sqrt[3]{4096} = 16\).
Thus, \(x+y+z = 16 + 16 + 16 = 48\).
Therefore, the minimum possible value of \(x+y+z\) is 48.
Step 1: Rewrite all logarithms with base \(2\). Since \(64 = 2^6\), \(8 = 2^3\), and \(512 = 2^9\), we convert each logarithmic term: \[ \log_{64} x^2 = \log_{2^6} x^2 = \frac{\log_2 x^2}{\log_2 2^6} = \frac{2\log_2 x}{6} = \frac{1}{3}\log_2 x. \] \[ \log_8 \sqrt{y} = \log_{2^3} y^{1/2} = \frac{\log_2 y^{1/2}}{\log_2 2^3} = \frac{\frac{1}{2}\log_2 y}{3} = \frac{1}{6}\log_2 y. \] \[ 3\log_{512}(\sqrt{y}z) = 3\log_{2^9}(y^{1/2}z) = 3\cdot \frac{\log_2(y^{1/2}z)}{9} = \frac{1}{3}\left(\frac{1}{2}\log_2 y + \log_2 z\right) = \frac{1}{6}\log_2 y + \frac{1}{3}\log_2 z. \] Step 2: Substitute into the given equation. The equation \[ \log_{64} x^2 + \log_8 \sqrt{y} + 3\log_{512}(\sqrt{y}z) = 4 \] becomes \[ \frac{1}{3}\log_2 x + \frac{1}{6}\log_2 y + \left(\frac{1}{6}\log_2 y + \frac{1}{3}\log_2 z\right) = 4. \] Combining like terms, \[ \frac{1}{3}\log_2 x + \frac{1}{3}\log_2 y + \frac{1}{3}\log_2 z = 4. \] Factoring \(\frac{1}{3}\), \[ \frac{1}{3}\bigl(\log_2 x + \log_2 y + \log_2 z\bigr) = 4. \] Using the logarithmic identity, \[ \log_2 x + \log_2 y + \log_2 z = \log_2(xyz), \] we obtain \[ \frac{1}{3}\log_2(xyz) = 4 \Rightarrow \log_2(xyz) = 12. \] Thus, \[ xyz = 2^{12} = 4096. \] Step 3: Minimize \(x + y + z\) using AM–GM inequality. For positive real numbers \(x, y, z\), \[ \frac{x + y + z}{3} \ge \sqrt[3]{xyz}. \] Substituting \(xyz = 2^{12}\), \[ \frac{x + y + z}{3} \ge \sqrt[3]{2^{12}} = 2^{4} = 16. \] Hence, \[ x + y + z \ge 48. \] Equality holds when \(x = y = z\), so the minimum value of \(x + y + z\) is achieved at \[ x = y = z = 16. \] Therefore, the minimum possible value of \(x + y + z\) is \[ 48. \]
The product of all solutions of the equation \(e^{5(\log_e x)^2 + 3 = x^8, x > 0}\) , is :
For any natural number $k$, let $a_k = 3^k$. The smallest natural number $m$ for which \[ (a_1)^1 \times (a_2)^2 \times \dots \times (a_{20})^{20} \;<\; a_{21} \times a_{22} \times \dots \times a_{20+m} \] is: