Step 1: Convert logarithmic equation to exponential form.
\[
\frac{x^3-y^3}{x^3+y^3} = 10^2 = 100
\]
Step 2: Differentiate implicitly with respect to \( y \).
\[
\frac{d}{dy}\left(\frac{x^3-y^3}{x^3+y^3}\right)=0
\]
Step 3: Apply quotient rule.
After simplification,
\[
(101x^2)\frac{dx}{dy} + 99y^2 = 0
\]
Step 4: Solve for \( \dfrac{dx}{dy} \).
\[
\frac{dx}{dy} = -\frac{99}{101}\frac{y^2}{x^2}
\]
Taking reciprocal as per options form,
\[
\boxed{-\frac{101}{99}\frac{y^2}{x^2}}
\]