Question:

\[ \text{If } \lim_{x \to 0} \frac{\cos 2x - \cos 4x}{1 - \cos 2x} = k, \text{ then evaluate } \lim_{x \to k} \frac{x^k - 27}{x^{k+1} - 81} \]

Show Hint

Break complex nested limits into manageable expressions and substitute known values carefully. For rational expressions, rewriting powers as reciprocals helps simplify.
Updated On: Jun 4, 2025
  • \( 0 \)
  • \( 1 \)
  • \( \dfrac{1}{2} \)
  • \( \dfrac{1}{4} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

To solve the given problem, we need to evaluate the expression using limits. We start with the first part: \[\lim_{x \to 0} \frac{\cos 2x - \cos 4x}{1 - \cos 2x} = k\]
We use the trigonometric identity for the difference of cosines: \[\cos A - \cos B = -2 \sin\left(\frac{A + B}{2}\right) \sin\left(\frac{A - B}{2}\right)\]Apply this identity:
\(-2 \sin(3x) \sin(-x)\ =\ 2 \sin(3x) \sin(x)\)
Now,\[1 - \cos 2x = 2 \sin^2 x\]Substitute these into the limit:
\[\lim_{x \to 0} \frac{2 \sin(3x) \sin x}{2 \sin^2 x} = \lim_{x \to 0} \frac{\sin(3x)}{\sin x} = \lim_{x \to 0} \frac{3 \sin x \cos x}{x\ sin x} = \lim_{x \to 0} 3 \cos x = 3\]
Thus, \(k = 3\).
Next, evaluate: \[\lim_{x \to k} \frac{x^k - 27}{x^{k+1} - 81}\]Substitute \(k = 3\):
\[\lim_{x \to 3} \frac{x^3 - 27}{x^4 - 81}\]
Apply factoring:\[x^3 - 27 = (x - 3)(x^2 + 3x + 9)\]
\[x^4 - 81 = (x - 3)(x^3 + 3x^2 + 9x + 27)\]Cancel \((x - 3)\):
\[\lim_{x \to 3} \frac{x^2 + 3x + 9}{x^3 + 3x^2 + 9x + 27}\]
Substitute \(x = 3\):
\(\frac{3^2 + 3 \cdot 3 + 9}{3^3 + 3 \cdot 3^2 + 9 \cdot 3 + 27} = \frac{9 + 9 + 9}{27 + 27 + 27 + 27} = \frac{27}{108} = \frac{1}{4}\)
The final answer is:
\(\frac{1}{4}\)
Was this answer helpful?
0
0