If l1,m1,n1 and l2,m2,n2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are m1n2-m2n1,n1l2-n2l1,l1m2-l2m1.
It is given that l1,m1,n1 and l2,m2,n2 are the direction cosines of two mutually perpendicular lines.
Therefore,
l1l2+m1m2+n1n2=0...(1)
l21+m21+n21=1...(2)
l22+m22+n22=1...(3)
Let l,m,n be the direction cosines of the line which is perpendicular to the line with direction cosines l1,m1,n1 and l2,m2,n2
∴ll1+mm1+nn1=0 ll2+mm2+nn2=0
∴\(\frac{l}{m_1n_2-m_2n_1}=\frac{m}{n_1l_2-n_2l_1}=\frac{n}{l_1m_2-l_2m_1}\)
\(\Rightarrow \frac{l^2}{(m_1n_2-m_2n_1)^2}=\frac{m^2}{(n_1l_2-n_2l_1)^2}=\frac{n^2}{(l_1m_2-l_2m_1)^2}\)
\(\Rightarrow \frac{l^2}{(m_1n_2-m_2n_1)^2}=\frac{m^2}{(n_1l_2-n_2l_1)^2}=\frac{n^2}{(l_1m_2-l_2m_1)^2}\)
=\(\Rightarrow \frac{l^2+m^2+n^2}{(m_1n_2-m_2n_1)^2+(n_1l_2-n_2l_1)^2+(l_1m_2-l_2m_1)^2}\). ...(4)
l,m,n are the direction cosines of the line.
∴l2+m2+n2=1...(5)
It is known that,
(l21+m21+n21)(l22+m22+n22)-(l1l2+m1m2+n1n2)2=(m1n2-m2n1)2+(n1l2-n2l1)2+(l1m2-l2m1)2
From(1),(2),and(3),we obtain
\(\Rightarrow\) 1.1-0=(m1n2+m2n1)2+(n1l2+n2l1)+(l1m2+l2m1)
∴ (m1n2-m2n1)2+(n1l2-n2l1)2+(l1m2-l2m1)2=1....(6)
Substituting the values from equations(5)and(6) in equation(4), we obtain
\(\Rightarrow \frac{l^2}{(m_1n_2-m_2n_1)^2}=\frac{m^2}{(n_1l_2-n_2l_1)^2}=\frac{n^2}{(l_1m_2-l_2m_1)^2}=1\)
\(\Rightarrow\) l=m1n2-m2n1, m=n1l2-n2l1, n=l1m2-l2m1
Thus, the direction cosines of the required line are m1n2-m2n1, m=n1l2-n2l1, n=l1m2-l2m1.
Let the lines $L_1 : \vec r = \hat i + 2\hat j + 3\hat k + \lambda(2\hat i + 3\hat j + 4\hat k)$, $\lambda \in \mathbb{R}$ and $L_2 : \vec r = (4\hat i + \hat j) + \mu(5\hat i + + 2\hat j + \hat k)$, $\mu \in \mathbb{R}$ intersect at the point $R$. Let $P$ and $Q$ be the points lying on lines $L_1$ and $L_2$, respectively, such that $|PR|=\sqrt{29}$ and $|PQ|=\sqrt{\frac{47}{3}}$. If the point $P$ lies in the first octant, then $27(QR)^2$ is equal to}

A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(iii) (b) If the foot of the ladder, whose length is 5 m, is being pulled towards the wall such that the rate of decrease of distance \( y \) is \( 2 \, \text{m/s} \), then at what rate is the height on the wall \( x \) increasing when the foot of the ladder is 3 m away from the wall?