If l1,m1,n1 and l2,m2,n2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are m1n2-m2n1,n1l2-n2l1,l1m2-l2m1.
It is given that l1,m1,n1 and l2,m2,n2 are the direction cosines of two mutually perpendicular lines.
Therefore,
l1l2+m1m2+n1n2=0...(1)
l21+m21+n21=1...(2)
l22+m22+n22=1...(3)
Let l,m,n be the direction cosines of the line which is perpendicular to the line with direction cosines l1,m1,n1 and l2,m2,n2
∴ll1+mm1+nn1=0 ll2+mm2+nn2=0
∴\(\frac{l}{m_1n_2-m_2n_1}=\frac{m}{n_1l_2-n_2l_1}=\frac{n}{l_1m_2-l_2m_1}\)
\(\Rightarrow \frac{l^2}{(m_1n_2-m_2n_1)^2}=\frac{m^2}{(n_1l_2-n_2l_1)^2}=\frac{n^2}{(l_1m_2-l_2m_1)^2}\)
\(\Rightarrow \frac{l^2}{(m_1n_2-m_2n_1)^2}=\frac{m^2}{(n_1l_2-n_2l_1)^2}=\frac{n^2}{(l_1m_2-l_2m_1)^2}\)
=\(\Rightarrow \frac{l^2+m^2+n^2}{(m_1n_2-m_2n_1)^2+(n_1l_2-n_2l_1)^2+(l_1m_2-l_2m_1)^2}\). ...(4)
l,m,n are the direction cosines of the line.
∴l2+m2+n2=1...(5)
It is known that,
(l21+m21+n21)(l22+m22+n22)-(l1l2+m1m2+n1n2)2=(m1n2-m2n1)2+(n1l2-n2l1)2+(l1m2-l2m1)2
From(1),(2),and(3),we obtain
\(\Rightarrow\) 1.1-0=(m1n2+m2n1)2+(n1l2+n2l1)+(l1m2+l2m1)
∴ (m1n2-m2n1)2+(n1l2-n2l1)2+(l1m2-l2m1)2=1....(6)
Substituting the values from equations(5)and(6) in equation(4), we obtain
\(\Rightarrow \frac{l^2}{(m_1n_2-m_2n_1)^2}=\frac{m^2}{(n_1l_2-n_2l_1)^2}=\frac{n^2}{(l_1m_2-l_2m_1)^2}=1\)
\(\Rightarrow\) l=m1n2-m2n1, m=n1l2-n2l1, n=l1m2-l2m1
Thus, the direction cosines of the required line are m1n2-m2n1, m=n1l2-n2l1, n=l1m2-l2m1.
Show that the following lines intersect. Also, find their point of intersection:
Line 1: \[ \frac{x - 1}{2} = \frac{y - 2}{3} = \frac{z - 3}{4} \]
Line 2: \[ \frac{x - 4}{5} = \frac{y - 1}{2} = z \]
The vector equations of two lines are given as:
Line 1: \[ \vec{r}_1 = \hat{i} + 2\hat{j} - 4\hat{k} + \lambda(4\hat{i} + 6\hat{j} + 12\hat{k}) \]
Line 2: \[ \vec{r}_2 = 3\hat{i} + 3\hat{j} - 5\hat{k} + \mu(6\hat{i} + 9\hat{j} + 18\hat{k}) \]
Determine whether the lines are parallel, intersecting, skew, or coincident. If they are not coincident, find the shortest distance between them.
Determine the vector equation of the line that passes through the point \( (1, 2, -3) \) and is perpendicular to both of the following lines:
\[ \frac{x - 8}{3} = \frac{y + 16}{7} = \frac{z - 10}{-16} \quad \text{and} \quad \frac{x - 15}{3} = \frac{y - 29}{-8} = \frac{z - 5}{-5} \]
Chlorobenzene to biphenyl