If l1,m1,n1 and l2,m2,n2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are m1n2-m2n1,n1l2-n2l1,l1m2-l2m1.
It is given that l1,m1,n1 and l2,m2,n2 are the direction cosines of two mutually perpendicular lines.
Therefore,
l1l2+m1m2+n1n2=0...(1)
l21+m21+n21=1...(2)
l22+m22+n22=1...(3)
Let l,m,n be the direction cosines of the line which is perpendicular to the line with direction cosines l1,m1,n1 and l2,m2,n2
∴ll1+mm1+nn1=0 ll2+mm2+nn2=0
∴\(\frac{l}{m_1n_2-m_2n_1}=\frac{m}{n_1l_2-n_2l_1}=\frac{n}{l_1m_2-l_2m_1}\)
\(\Rightarrow \frac{l^2}{(m_1n_2-m_2n_1)^2}=\frac{m^2}{(n_1l_2-n_2l_1)^2}=\frac{n^2}{(l_1m_2-l_2m_1)^2}\)
\(\Rightarrow \frac{l^2}{(m_1n_2-m_2n_1)^2}=\frac{m^2}{(n_1l_2-n_2l_1)^2}=\frac{n^2}{(l_1m_2-l_2m_1)^2}\)
=\(\Rightarrow \frac{l^2+m^2+n^2}{(m_1n_2-m_2n_1)^2+(n_1l_2-n_2l_1)^2+(l_1m_2-l_2m_1)^2}\). ...(4)
l,m,n are the direction cosines of the line.
∴l2+m2+n2=1...(5)
It is known that,
(l21+m21+n21)(l22+m22+n22)-(l1l2+m1m2+n1n2)2=(m1n2-m2n1)2+(n1l2-n2l1)2+(l1m2-l2m1)2
From(1),(2),and(3),we obtain
\(\Rightarrow\) 1.1-0=(m1n2+m2n1)2+(n1l2+n2l1)+(l1m2+l2m1)
∴ (m1n2-m2n1)2+(n1l2-n2l1)2+(l1m2-l2m1)2=1....(6)
Substituting the values from equations(5)and(6) in equation(4), we obtain
\(\Rightarrow \frac{l^2}{(m_1n_2-m_2n_1)^2}=\frac{m^2}{(n_1l_2-n_2l_1)^2}=\frac{n^2}{(l_1m_2-l_2m_1)^2}=1\)
\(\Rightarrow\) l=m1n2-m2n1, m=n1l2-n2l1, n=l1m2-l2m1
Thus, the direction cosines of the required line are m1n2-m2n1, m=n1l2-n2l1, n=l1m2-l2m1.
List - I | List - II | ||
(P) | γ equals | (1) | \(-\hat{i}-\hat{j}+\hat{k}\) |
(Q) | A possible choice for \(\hat{n}\) is | (2) | \(\sqrt{\frac{3}{2}}\) |
(R) | \(\overrightarrow{OR_1}\) equals | (3) | 1 |
(S) | A possible value of \(\overrightarrow{OR_1}.\hat{n}\) is | (4) | \(\frac{1}{\sqrt6}\hat{i}-\frac{2}{\sqrt6}\hat{j}+\frac{1}{\sqrt6}\hat{k}\) |
(5) | \(\sqrt{\frac{2}{3}}\) |
Let \(\alpha x+\beta y+y z=1\) be the equation of a plane passing through the point\((3,-2,5)\)and perpendicular to the line joining the points \((1,2,3)\) and \((-2,3,5)\) Then the value of \(\alpha \beta y\)is equal to ____
What is the Planning Process?