Let $f(x) = ax^2 + bx + c$ with roots $l, m$
Then sign of $f(x)$ between $l$ and $m$ depends on sign of $a$
Since $f(x) = a(x - l)(x - m)$, in $(l, m)$, $(x - l)(x - m)<0$ ⇒ sign opposite to $a$
So limit as $x \to \alpha$ inside $(l,m)$ gives negative sign ⇒ $-|d|/a$