Question:

If (l,k) (l, k) is a point on the circle passing through the points (1,1) (-1, 1) , (0,1) (0, -1) , and (1,0) (1, 0) , and if k0 k \neq 0 , then find k k .

Show Hint

When determining the equation of a circle given points on its circumference, substitute the coordinates into the general circle equation to create a system of equations. Solve this system to find the unknown constants.
Updated On: Mar 11, 2025
  • 12 \frac{1}{2}
  • 13 \frac{1}{3}
  • 13 \frac{-1}{3}
  • 12 \frac{-1}{2} \bigskip
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

We are given that the points (1,1) (-1, 1) , (0,1) (0, -1) , (1,0) (1, 0) , and (l,k) (l, k) all lie on a circle. The general form of a circle is: x2+y2+Dx+Ey+F=0, x^2 + y^2 + Dx + Ey + F = 0, where D D , E E , and F F are constants. By substituting the coordinates of the first three points into this equation, we can form a system to determine these constants.

Step 1: Substitute the Points 
For the point (1,1) (-1, 1) : (1)2+12+D(1)+E(1)+F=01+1D+E+F=0, (-1)^2 + 1^2 + D(-1) + E(1) + F = 0 \quad \Rightarrow \quad 1 + 1 - D + E + F = 0, which simplifies to: D+E+F=2. -D + E + F = -2. For the point (0,1) (0, -1) : 02+(1)2+D(0)+E(1)+F=01E+F=0, 0^2 + (-1)^2 + D(0) + E(-1) + F = 0 \quad \Rightarrow \quad 1 - E + F = 0, yielding: E+F=1. -E + F = -1. For the point (1,0) (1, 0) : 12+02+D(1)+E(0)+F=01+D+F=0, 1^2 + 0^2 + D(1) + E(0) + F = 0 \quad \Rightarrow \quad 1 + D + F = 0, which gives: D+F=1. D + F = -1.  

Step 2: Solve the System of Equations 
We now have the following equations: D+E+F=2(1) -D + E + F = -2 \quad \text{(1)} E+F=1(2) -E + F = -1 \quad \text{(2)} D+F=1(3) D + F = -1 \quad \text{(3)} From Equation (3), we solve for D D : D=1F. D = -1 - F. Substitute D=1F D = -1 - F into Equation (1): (1F)+E+F=21+F+E+F=2, -(-1 - F) + E + F = -2 \quad \Rightarrow \quad 1 + F + E + F = -2, which simplifies to: 2F+E=3.(4) 2F + E = -3. \quad \text{(4)} Next, from Equation (2): E+F=1E=F+1.(5) -E + F = -1 \quad \Rightarrow \quad E = F + 1. \quad \text{(5)} Substitute Equation (5) into Equation (4): 2F+(F+1)=33F+1=3, 2F + (F + 1) = -3 \quad \Rightarrow \quad 3F + 1 = -3, so that: 3F=4F=43. 3F = -4 \quad \Rightarrow \quad F = -\frac{4}{3}. Then, using Equation (5): E=43+1=13, E = -\frac{4}{3} + 1 = -\frac{1}{3}, and from Equation (3): D=1(43)=1+43=13. D = -1 - \left(-\frac{4}{3}\right) = -1 + \frac{4}{3} = \frac{1}{3}.  

Step 3: Determine k k Using the Circle's Equation 
Substitute D=13 D = \frac{1}{3} , E=13 E = -\frac{1}{3} , and F=43 F = -\frac{4}{3} into the circle's equation: x2+y2+13x13y43=0. x^2 + y^2 + \frac{1}{3}x - \frac{1}{3}y - \frac{4}{3} = 0. Replacing x x by l l and y y by k k gives: l2+k2+13l13k43=0. l^2 + k^2 + \frac{1}{3}l - \frac{1}{3}k - \frac{4}{3} = 0. Upon solving this equation for k k , we obtain: k=13. k = \frac{1}{3}. \bigskip

Was this answer helpful?
0
0