Step 1: Parametric point on parabola
For $y^2 = 4ax$, parametric point at $t$ is $(a t^2, 2 a t)$. Given $y^2 = 8x \Rightarrow 4a = 8 \Rightarrow a = 2$.
At $t = \frac{1}{\sqrt{2}}$:
\[
x = 2 \times \left(\frac{1}{\sqrt{2}}\right)^2 = 1, \quad y = 4 \times \frac{1}{\sqrt{2}} = 2 \sqrt{2}.
\]
Step 2: Equation of normal
Normal to parabola at $t$:
\[
y + t x = 2 a t + a t^3.
\]
Substitute $a=2$, $t = \frac{1}{\sqrt{2}}$:
\[
y + \frac{1}{\sqrt{2}} x = 4 \times \frac{1}{\sqrt{2}} + 2 \times \left(\frac{1}{\sqrt{2}}\right)^3 = \frac{4}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{5}{\sqrt{2}}.
\]
Multiply by $\sqrt{2}$:
\[
\sqrt{2} y + x = 5.
\]
Step 3: Coordinates of focus
Focus of parabola is $(a, 0) = (2, 0)$.
Step 4: Foot of perpendicular from focus to normal
Line: $x + \sqrt{2} y - 5 = 0$.
Point: $(2,0)$.
Let foot be $(x_f, y_f)$. The vector from $(2,0)$ to foot is perpendicular to the line, so:
\[
\frac{x_f - 2}{1} = \frac{y_f - 0}{\sqrt{2}} = -\lambda.
\]
So,
\[
x_f = 2 - \lambda, \quad y_f = -\lambda \sqrt{2}.
\]
Substitute into line:
\[
(2 - \lambda) + \sqrt{2}(-\lambda \sqrt{2}) - 5 = 0,
\]
\[
2 - \lambda - 2 \lambda - 5 = 0,
\]
\[
-3 \lambda - 3 = 0 \implies \lambda = -1.
\]
Therefore,
\[
x_f = 3, \quad y_f = \sqrt{2}.
\]