We are given the integral:
\[
\int \sec^2(7 - 4x) \, dx = \tan(7 - 4x) + C
\]
To solve this, we use the substitution method. Let:
\[
u = 7 - 4x \quad \Rightarrow \quad du = -4 dx \quad \Rightarrow \quad dx = -\frac{1}{4} du
\]
Substituting this into the integral, we get:
\[
\int \sec^2(u) \cdot \left(-\frac{1}{4}\right) \, du = -\frac{1}{4} \int \sec^2(u) \, du
\]
We know that:
\[
\int \sec^2(u) \, du = \tan(u)
\]
Therefore, the integral becomes:
\[
-\frac{1}{4} \cdot \tan(u) + C = -\frac{1}{4} \cdot \tan(7 - 4x) + C
\]
Thus, the result matches \( \tan(7 - 4x) + C \) when the value of \( a = 7 \).
The correct answer is \( \boxed{7} \).