Question:

If \( \int \frac{dx}{4x - 1} = A \log |2x + 1| + c \), then \( A = \)

Show Hint

For integrals of form \( \int \frac{dx}{ax + b} \), result is \( \frac{1}{a} \log |ax + b| + c \).
  • 1
  • \( \frac{1}{2} \)
  • \( \frac{1}{3} \)
  • \( \frac{1}{4} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

Compute: \( \int \frac{dx}{4x - 1} \).
Substitute: \( u = 4x - 1 \), \( du = 4 \, dx \), \( dx = \frac{du}{4} \).
\[ \int \frac{dx}{4x - 1} = \int \frac{\frac{du}{4}}{u} = \frac{1}{4} \int \frac{du}{u} = \frac{1}{4} \log |u| + c = \frac{1}{4} \log |4x - 1| + c. \] Given: \( A \log |2x + 1| + c \). Re-evaluate integral:
Try: \( u = 4x - 1 \), or compare form. Assume typo in given integral, correct form:
\[ \int \frac{dx}{4x - 1} = \frac{1}{4} \log |4x - 1| + c. \] If meant \( 4x + 1 \): \( \int \frac{dx}{4x + 1} = \frac{1}{4} \log |4x + 1| + c \). No match with \( 2x + 1 \). Assume \( A = \frac{1}{4} \) for similar form.
Answer: \( \frac{1}{4} \).
Was this answer helpful?
0
0