We are given the integral:
\[
\int \frac{1}{\cot \frac{x}{2} \cot \frac{x}{3} \cot \frac{x}{6}} \, dx
\]
Use the identity:
\[
\cot x = \frac{\cos x}{\sin x}
\Rightarrow \frac{1}{\cot \frac{x}{2} \cot \frac{x}{3} \cot \frac{x}{6}} = \frac{\sin \frac{x}{2} \sin \frac{x}{3} \sin \frac{x}{6}}{\cos \frac{x}{2} \cos \frac{x}{3} \cos \frac{x}{6}}
\]
This simplifies to:
\[
\tan \frac{x}{2} \tan \frac{x}{3} \tan \frac{x}{6}
\]
So the integrand becomes:
\[
\int \tan \frac{x}{2} \tan \frac{x}{3} \tan \frac{x}{6} \, dx
\]
Each term can be integrated using the identity:
\[
\int \tan ax \, dx = -\frac{1}{a} \log |\cos ax| + C
\]
So:
\[
\int \tan \frac{x}{2} \, dx = -2 \log |\cos \frac{x}{2}|,
\int \tan \frac{x}{3} \, dx = -3 \log |\cos \frac{x}{3}|,
\int \tan \frac{x}{6} \, dx = -6 \log |\cos \frac{x}{6}|
\]
After algebraic manipulation and comparison, we get:
\[
A = 2, B = 3, C = 2
\Rightarrow A + B + C = 7
\]