Step 1: Evaluating the given integral
We need to evaluate:
\[
I = \int \frac{1}{1 - \cos x} \, dx.
\]
Using the identity:
\[
1 - \cos x = 2 \sin^2 \frac{x}{2},
\]
we rewrite the integral as:
\[
I = \int \frac{1}{2 \sin^2 \frac{x}{2}} \, dx.
\]
Using the standard integral:
\[
\int \frac{dx}{\sin^2 x} = -\cot x,
\]
we get:
\[
I = \int \frac{dx}{2 \sin^2 \frac{x}{2}} = -\frac{1}{2} \cot \frac{x}{2} + c.
\]
Using the identity:
\[
\cot x = \tan \left( \frac{\pi}{2} - x \right),
\]
we rewrite:
\[
I = \tan \left( \frac{x}{4} + \beta \right) + c.
\]
Step 2: Finding \( \frac{\pi}{4} - \beta \)
Comparing with the given equation:
\[
\tan \left( \frac{x}{4} + \beta \right),
\]
we see that:
\[
\beta = -\frac{\pi}{4}.
\]
Thus,
\[
\frac{\pi}{4} - \beta = \frac{\pi}{4} - \left(-\frac{\pi}{4}\right) = \frac{\pi}{2}.
\]
Step 3: Conclusion
Thus, the correct answer is:
\[
\frac{\pi}{2}.
\]