Question:

If \[ \int \frac{1}{1 - \cos x} \, dx = \tan \left( \frac{x}{4} + \beta \right) + c, \] then one of the values of \( \frac{\pi}{4} - \beta \) is:

Show Hint

For integrals involving \( \frac{1}{1 - \cos x} \), use the identity \( 1 - \cos x = 2 \sin^2 \frac{x}{2} \) to simplify the integral.
Updated On: Mar 25, 2025
  • \( -\frac{\pi}{2} \)
  • \( \frac{\pi}{2} \)
  • \( 0 \)
  • \( \frac{\pi}{4} \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Step 1: Evaluating the given integral
We need to evaluate: \[ I = \int \frac{1}{1 - \cos x} \, dx. \] Using the identity: \[ 1 - \cos x = 2 \sin^2 \frac{x}{2}, \] we rewrite the integral as: \[ I = \int \frac{1}{2 \sin^2 \frac{x}{2}} \, dx. \] Using the standard integral: \[ \int \frac{dx}{\sin^2 x} = -\cot x, \] we get: \[ I = \int \frac{dx}{2 \sin^2 \frac{x}{2}} = -\frac{1}{2} \cot \frac{x}{2} + c. \] Using the identity: \[ \cot x = \tan \left( \frac{\pi}{2} - x \right), \] we rewrite: \[ I = \tan \left( \frac{x}{4} + \beta \right) + c. \] Step 2: Finding \( \frac{\pi}{4} - \beta \)
Comparing with the given equation: \[ \tan \left( \frac{x}{4} + \beta \right), \] we see that: \[ \beta = -\frac{\pi}{4}. \] Thus, \[ \frac{\pi}{4} - \beta = \frac{\pi}{4} - \left(-\frac{\pi}{4}\right) = \frac{\pi}{2}. \] Step 3: Conclusion
Thus, the correct answer is: \[ \frac{\pi}{2}. \]
Was this answer helpful?
0
0