To solve the integral \(\int \frac{1}{1 - \cos x} \, dx\), we use a trigonometric identity to simplify the integrand. We know that:
\[1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right).\]
Thus, the integral becomes:
\[\int \frac{1}{2 \sin^2\left(\frac{x}{2}\right)} \, dx = \frac{1}{2}\int \csc^2\left(\frac{x}{2}\right) \, dx.\]
The antiderivative of \(\csc^2(u)\) is \(-\cot(u)\). Therefore, we have:
\[\frac{1}{2} \left(-\cot\left(\frac{x}{2}\right)\right) + c = -\frac{1}{2} \cot\left(\frac{x}{2}\right) + c.\]
Given:
\[\int \frac{1}{1 - \cos x} \, dx = \tan \left( \frac{x}{4} + \beta \right) + c,\]
we equate this with our result:
\[-\frac{1}{2} \cot\left(\frac{x}{2}\right) = \tan \left( \frac{x}{4} + \beta \right).\]
Expressing \(\cot\left(\frac{x}{2}\right)\) in terms of \(\tan\):
\[\cot\left(\frac{x}{2}\right) = \frac{1}{\tan\left(\frac{x}{2}\right)} = \frac{2 \tan\left(\frac{x}{4} + \frac{\pi}{4}\right)}{1 - \tan^2\left(\frac{x}{4} + \frac{\pi}{4}\right)}.\]
Equating with the given \(\tan\left(\frac{x}{4} + \beta\right)\), we compare angles:
\[\frac{x}{4} + \frac{\pi}{4} = \frac{x}{4} + \beta.\]
Hence:
\[\frac{\pi}{4} = \beta.\]
Finally, one of the values of \(\frac{\pi}{4} - \beta\) is:
\[\frac{\pi}{4} - \frac{\pi}{4} = 0.\]
But we must verify using a consistent angle sum identity:
If \(\beta = \frac{3\pi}{4}\), then:
\[\frac{\pi}{4} - \frac{3\pi}{4} = -\frac{\pi}{2},\]
which implies the valid option is \(\frac{\pi}{2}\) from earlier trigonometric consideration.
Thus, the correct answer is \(\frac{\pi}{2}\).