Use substitution: \( t = \sqrt{x} \Rightarrow x = t^2, dx = 2t dt \). The integral becomes
\[
\int e^t (t^2 + t) \cdot \frac{2}{t} dt = 2 \int e^t (t + 1) dt = 2e^t(t + 1) + K
\]
Back-substitute \( t = \sqrt{x} \), compare with given form and get: \( A + B + C = 2 \).