We are given the integral:
\[
\int e^{-3 \log x} \, dx = f(x) + C
\]
First, simplify the expression inside the integral:
\[
e^{-3 \log x} = \left( e^{\log x} \right)^{-3} = x^{-3}
\]
So, the integral becomes:
\[
\int x^{-3} \, dx
\]
Step 1: Integrate $x^{-3}$ with respect to $x$:
\[
\int x^{-3} \, dx = \frac{x^{-2}}{-2} = \frac{-1}{2x^2}
\]
Thus, we have:
\[
f(x) = \frac{-1}{2x^2}
\]
Therefore, the correct answer is (C) $ \frac{-1}{2x^2} $.