\(\frac{2^n}{m+1}-\frac{n}{m+1}(m+1,n-1)\)
The correct option is:(A) \(\frac{2^n}{m+1}-\frac{n}{m+1}(m+1,n-1)\).
Here, I(m,n) =\(\int_0^1 t^m(1+t)n dt ,\) reduce into I(m + 1, n - 1)
[we apply integration by parts taking (1 + t)\(^n\) as first
and t\(^m\) as second function]
\(\therefore \, \, \, \, \, i(m,n)=\bigg[(1+t)^n.\frac{t^{m+1}}{m+1}\bigg]_0^1 \, -\int_0^1n(1+t)^{n-1}.\frac{t^{m+1}}{m+1}dt\)
\(\, \, \, \, \, \, \, \, =\frac{2^n}{m+1}-\frac{n}{m+1} \int_0^1 (1+t)^{(n-1)},t^{m+1}dt\)
\(\therefore \, \, I(m,n) =\frac{2^n}{m+1}-\frac{n}{m+1}.I(m+1,n-1)\)
Let $ a_0, a_1, ..., a_{23} $ be real numbers such that $$ \left(1 + \frac{2}{5}x \right)^{23} = \sum_{i=0}^{23} a_i x^i $$ for every real number $ x $. Let $ a_r $ be the largest among the numbers $ a_j $ for $ 0 \leq j \leq 23 $. Then the value of $ r $ is ________.
A temperature difference can generate e.m.f. in some materials. Let $ S $ be the e.m.f. produced per unit temperature difference between the ends of a wire, $ \sigma $ the electrical conductivity and $ \kappa $ the thermal conductivity of the material of the wire. Taking $ M, L, T, I $ and $ K $ as dimensions of mass, length, time, current and temperature, respectively, the dimensional formula of the quantity $ Z = \frac{S^2 \sigma}{\kappa} $ is:
Integration by Parts is a mode of integrating 2 functions, when they multiplied with each other. For two functions ‘u’ and ‘v’, the formula is as follows:
∫u v dx = u∫v dx −∫u' (∫v dx) dx
The first function ‘u’ is used in the following order (ILATE):
The rule as a diagram: