Question:

If \(\vec{\alpha}=\hat{i}-3\hat{j},\vec{\beta}=\hat{i}+2\hat{j}-\hat{k}\) then express If |a×b|+|a.b|=36 and |a|=3 then |b| is equal to\(\vec{\beta}\) in the form \(\vec{β}=\vec{β_1}+\vec{β_2}\) where \(\vec{β}_1\) is parellel to \(\vec{\alpha}\) and \(\vec{β}_2\) is perpendicular to \(\vec{\alpha}\) then \(\vec{β_1}\) is given by

Updated On: Jul 2, 2024
  • \(\frac{5}{8}(\hat{i}-3\hat{j})\)
  • \(\hat{i}-3\hat{j}\)
  • \(\frac{5}{8}(\hat{i}+3\hat{j})\)
  • \(\hat{i}+3\hat{j}\)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

The correct answer is (C) : \(\frac{5}{8}(\hat{i}+3\hat{j})\).
Was this answer helpful?
2
1

Top Questions on Vectors

View More Questions