Given \(g(x)\) is the inverse of \(f(x)\), so \(g(f(x)) = x\) and \(f(g(x)) = x\).
We are given \(g(x) = x + \tan x\).
We need to find \(f'(x)\).
We know the formula for the derivative of an inverse function: \( f'(x) = \frac{1}{g'(f(x))} \).
First, find \(g'(x)\).
Given \(g(x) = x + \tan x\).
\[ g'(x) = \frac{d}{dx}(x + \tan x) = 1 + \sec^2 x \]
Now, substitute this into the formula for \(f'(x)\):
\[ f'(x) = \frac{1}{g'(f(x))} \]
Replace \(x\) with \(f(x)\) in the expression for \(g'(x)\):
\[ g'(f(x)) = 1 + \sec^2(f(x)) \]
Therefore,
\[ f'(x) = \frac{1}{1 + \sec^2(f(x))} \]
This matches option (2).
Let's verify the variable.
The question asks for \(f'(x)\).
Option (3) is \( \frac{1}{1+\sec^2g(x)} \).
If we differentiate \( f(g(x)) = x \) with respect to \(x\):
\( f'(g(x)) \cdot g'(x) = 1 \).
So \( f'(g(x)) = \frac{1}{g'(x)} \).
If \(y = g(x)\), then \( f'(y) = \frac{1}{g'(x)} = \frac{1}{g'(g^{-1}(y))} = \frac{1}{g'(f(y))} \).
Replacing \(y\) with \(x\), we get \( f'(x) = \frac{1}{g'(f(x))} \).
This is consistent.
The variable in the options is \(x\).
Option (2) is \( \frac{1}{1+\sec^2f(x)} \).
Option (3) has \(g(x)\) in the denominator argument.
If the question was asking for \( (g^{-1})'(x) \) where \(g^{-1} = f \), this is correct.
Let \( y = f(x) \).
Then \( x = g(y) = y + \tan y \).
We want \( \frac{dy}{dx} \).
We have \( \frac{dx}{dy} \).
\( \frac{dx}{dy} = \frac{d}{dy}(y+\tan y) = 1 + \sec^2 y \).
So, \( f'(x) = \frac{dy}{dx} = \frac{1}{dx/dy} = \frac{1}{1+\sec^2 y} \).
Since \( y=f(x) \), we have
\[ f'(x) = \frac{1}{1+\sec^2(f(x))} \]
This confirms option (2).