Given: - Frequency of the electromagnetic wave: \( f = 60 \, \text{MHz} = 60 \times 10^6 \, \text{Hz} \) - Speed of light in air: \( c = 3 \times 10^8 \, \text{m/s} \)
The wavelength \( \lambda \) of an electromagnetic wave is given by the formula:
\[ \lambda = \frac{c}{f} \]
Substituting the given values:
\[ \lambda = \frac{3 \times 10^8 \, \text{m/s}}{60 \times 10^6 \, \text{Hz}} \]
Simplifying:
\[ \lambda = \frac{3 \times 10^8}{60 \times 10^6} \, \text{m} \] \[ \lambda = \frac{3}{60} \times 10^2 \, \text{m} \] \[ \lambda = 5 \, \text{m} \]
The wavelength of the electromagnetic wave is \( 5 \, \text{m} \).
The dimension of $ \sqrt{\frac{\mu_0}{\epsilon_0}} $ is equal to that of: (Where $ \mu_0 $ is the vacuum permeability and $ \epsilon_0 $ is the vacuum permittivity)
The unit of $ \sqrt{\frac{2I}{\epsilon_0 c}} $ is: (Where $ I $ is the intensity of an electromagnetic wave, and $ c $ is the speed of light)
Let one focus of the hyperbola $ \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 $ be at $ (\sqrt{10}, 0) $, and the corresponding directrix be $ x = \frac{\sqrt{10}}{2} $. If $ e $ and $ l $ are the eccentricity and the latus rectum respectively, then $ 9(e^2 + l) $ is equal to: