To determine the wavelength of an electromagnetic wave with a given frequency, we can use the fundamental relationship between the speed of light, frequency, and wavelength. The formula is given by:
\(c = \lambda \cdot f\)
Where:
Given:
We need to find the wavelength \(\lambda\) in meters.
Using the formula, we rearrange for \(\lambda\):
\(\lambda = \frac{c}{f}\)
Substitute the given values:
\(\lambda = \frac{3 \times 10^8}{60 \times 10^6}\)
Calculate \(\lambda\):
\(\lambda = \frac{3 \times 10^8}{60 \times 10^6} = \frac{3}{60} \times 10^2 = 0.05 \times 10^2 = 5\) meters.
Thus, the wavelength of the electromagnetic wave is 5 meters. Therefore, the correct answer is:
Given: - Frequency of the electromagnetic wave: \( f = 60 \, \text{MHz} = 60 \times 10^6 \, \text{Hz} \) - Speed of light in air: \( c = 3 \times 10^8 \, \text{m/s} \)
The wavelength \( \lambda \) of an electromagnetic wave is given by the formula:
\[ \lambda = \frac{c}{f} \]
Substituting the given values:
\[ \lambda = \frac{3 \times 10^8 \, \text{m/s}}{60 \times 10^6 \, \text{Hz}} \]
Simplifying:
\[ \lambda = \frac{3 \times 10^8}{60 \times 10^6} \, \text{m} \] \[ \lambda = \frac{3}{60} \times 10^2 \, \text{m} \] \[ \lambda = 5 \, \text{m} \]
The wavelength of the electromagnetic wave is \( 5 \, \text{m} \).
A laser beam has intensity of $4.0\times10^{14}\ \text{W/m}^2$. The amplitude of magnetic field associated with the beam is ______ T. (Take $\varepsilon_0=8.85\times10^{-12}\ \text{C}^2/\text{N m}^2$ and $c=3\times10^8\ \text{m/s}$)
Which one of the following graphs accurately represents the plot of partial pressure of CS₂ vs its mole fraction in a mixture of acetone and CS₂ at constant temperature?

Let \( \alpha = \dfrac{-1 + i\sqrt{3}}{2} \) and \( \beta = \dfrac{-1 - i\sqrt{3}}{2} \), where \( i = \sqrt{-1} \). If
\[ (7 - 7\alpha + 9\beta)^{20} + (9 + 7\alpha - 7\beta)^{20} + (-7 + 9\alpha + 7\beta)^{20} + (14 + 7\alpha + 7\beta)^{20} = m^{10}, \] then the value of \( m \) is ___________.