Let \( y = \frac{u(x)}{v(x)w(x)} \), where \(u(x)=x^2+1\), \(v(x)=x^2+5\), \(w(x)=x^2+9\).
We can use logarithmic differentiation.
\( \ln y = \ln u - \ln v - \ln w \)
Differentiate with respect to x:
\( \frac{1}{y} \frac{dy}{dx} = \frac{u'}{u} - \frac{v'}{v} - \frac{w'}{w} \)
\( \frac{dy}{dx} = y \left( \frac{u'}{u} - \frac{v'}{v} - \frac{w'}{w} \right) \)
Here, \(u = x^2+1 \implies u' = 2x\).
\(v = x^2+5 \implies v' = 2x\).
\(w = x^2+9 \implies w' = 2x\).
So, \( \frac{dy}{dx} = \frac{x^2+1}{(x^2+5)(x^2+9)} \left( \frac{2x}{x^2+1} - \frac{2x}{x^2+5} - \frac{2x}{x^2+9} \right) \)
\( \frac{dy}{dx} = \frac{x^2+1}{(x^2+5)(x^2+9)} \cdot 2x \left( \frac{1}{x^2+1} - \frac{1}{x^2+5} - \frac{1}{x^2+9} \right) \)
This can be rewritten as:
\( \frac{dy}{dx} = \frac{2x(x^2+1)}{(x^2+5)(x^2+9)} \left[ \frac{1}{x^2+1} - \frac{1}{x^2+5} - \frac{1}{x^2+9} \right] \)
Comparing this with the given form:
\( \frac{d}{dx} (\dots) = \frac{2x(x^2+1)}{(x^2+5)(x^2+9)} \left[ \frac{1}{f(x)} - \frac{1}{g(x)} - \frac{1}{h(x)} \right] \)
We can identify:
\(f(x) = x^2+1\)
\(g(x) = x^2+5\)
\(h(x) = x^2+9\)
(Note: The order of g(x) and h(x) with the minus signs might be interchangeable if their sum is considered, but the direct comparison suggests this mapping.)
We need to find \(2h(x) - f(x) - g(x)\).
\(2h(x) - f(x) - g(x) = 2(x^2+9) - (x^2+1) - (x^2+5)\)
\( = (2x^2+18) - (x^2+1) - (x^2+5) \)
\( = 2x^2+18 - x^2 - 1 - x^2 - 5 \)
\( = (2x^2 - x^2 - x^2) + (18 - 1 - 5) \)
\( = 0x^2 + (17 - 5) = 12 \).
The value is 12. This matches option (a).
\[ \boxed{12} \]