We are given two rational expressions and asked to find the values of \( A \), \( B \), \( C \), and \( D \) such that the two equations hold true.
Step 1: Consider the first equation: \[ \frac{1}{(3x+1)(x-2)} = \frac{A}{3x+1} + \frac{B}{x-2}. \] To combine the right-hand side into a single fraction, we use the common denominator \( (3x + 1)(x - 2) \): \[ \frac{A}{3x+1} + \frac{B}{x-2} = \frac{A(x-2) + B(3x+1)}{(3x+1)(x-2)}. \] Since the denominators on both sides are the same, equate the numerators: \[ 1 = A(x - 2) + B(3x + 1). \] Expanding both terms: \[ 1 = A(x - 2) + B(3x + 1) = A x - 2A + 3B x + B. \] Now, collect like terms: \[ 1 = (A + 3B)x + (-2A + B). \] For the equation to hold true for all values of \( x \), the coefficients of \( x \) and the constant terms must be equal on both sides:
- Coefficient of \( x \): \( A + 3B = 0 \),
- Constant term: \( -2A + B = 1 \).
Step 2: Now, consider the second equation: \[ \frac{x+1}{(3x+1)(x-2)} = \frac{C}{3x+1} + \frac{D}{x-2}. \] Following similar steps as before, combine the right-hand side into a single fraction: \[ \frac{C}{3x+1} + \frac{D}{x-2} = \frac{C(x-2) + D(3x+1)}{(3x+1)(x-2)}. \] Equating the numerators: \[ x + 1 = C(x - 2) + D(3x + 1). \] Expanding both terms: \[ x + 1 = Cx - 2C + 3Dx + D. \] Collect like terms: \[ x + 1 = (C + 3D)x + (-2C + D). \] For the equation to hold true for all values of \( x \), the coefficients of \( x \) and the constant terms must be equal:
- Coefficient of \( x \): \( C + 3D = 1 \),
- Constant term: \( -2C + D = 1 \).
Step 3: Now we have the system of equations: 1. \( A + 3B = 0 \),
2. \( -2A + B = 1 \),
3. \( C + 3D = 1 \),
4. \( -2C + D = 1 \).
Solving these, we get: \[ A:C = 3:2, \quad B:D = 1:3. \] Thus, the correct answer is \( A + 3B = 0, A:C = 3:2, B:D = 1:3 \).
If \( \vec{u}, \vec{v}, \vec{w} \) are non-coplanar vectors and \( p, q \) are real numbers, then the equality:
\[ [3\vec{u} \quad p\vec{v} \quad p\vec{w}] - [p\vec{v} \quad \vec{w} \quad q\vec{u}] - [2\vec{w} \quad q\vec{v} \quad q\vec{u}] = 0 \]
holds for:
Let \(\mathbf{a}, \mathbf{b}, \mathbf{c}\) be position vectors of three non-collinear points on a plane. If
\[ \alpha = \left[\mathbf{a} \quad \mathbf{b} \quad \mathbf{c}\right] \text{ and } \mathbf{r} = \mathbf{a} \times \mathbf{b} - \mathbf{c} \times \mathbf{b} - \mathbf{a} \times \mathbf{c}, \]
Then \(\frac{|\alpha|}{|\mathbf{r}|}\) represents:
If
\[ P = (a \times \mathbf{i})^2 + (a \times \mathbf{j})^2 + (a \times \mathbf{k})^2 \]
and
\[ Q = (a \cdot \mathbf{i})^2 + (a \cdot \mathbf{j})^2 + (a \cdot \mathbf{k})^2, \]
Then find the relation between \(P\) and \(Q\).
Given vectors \(\mathbf{a} = \mathbf{i} + \mathbf{j} - 2\mathbf{k}\), \(\mathbf{b} = \mathbf{i} + 2\mathbf{j} - 3\mathbf{k}\), \(\mathbf{c} = 2\mathbf{i} - \mathbf{j} + \mathbf{k}\), and \(\mathbf{r}\) such that
\[ \mathbf{r} \cdot \mathbf{a} = 0, \\ \mathbf{r} \cdot \mathbf{c} = 3, \\ [\mathbf{r} \quad \mathbf{a} \quad \mathbf{b}] = 0, \]
Then find \(|\mathbf{r}|\).