Step 1: Understanding the Arrhenius Equation
The Arrhenius equation is:
\[
\log k = \log A - \frac{E_a}{2.303RT}
\]
Step 2: Finding the Rate Constant \( k \)
For a first-order reaction, the half-life is given by:
\[
k = \frac{0.693}{t_{1/2}}
\]
Substituting \( t_{1/2} = 10 \) minutes \( = 600 \) s:
\[
k = \frac{0.693}{600} = 1.1 \times 10^{-3} { s}^{-1}
\]
Step 3: Substituting into the Arrhenius Equation
\[
\log (1.1 \times 10^{-3}) = \log (4 \times 10^{13}) - \frac{98.6 \times 10^3}{2.303 \times 8.314 \times T}
\]
Step 4: Solving for \( T \)
\[
T = 311.15 { K}
\]
Thus, the correct answer is (D).