The correct answer is (B): \(15.9375\)
Given \(f(x+y) = f(x)f(y)\)
\(⇒ f(x) = ax\) (where a is constant )
Given, \(f(5)=4 ⇒ a^5 = 4⇒ a = 2^{\frac{2}{5}}\)
\(f(10)-f(-10) = a^{10}-a^{-10}=\bigg(2^{\frac{2}{5}}\bigg)^{10}-\bigg(2^{\frac{2}{5}}\bigg)^{-10}\)
= \(2^4-2^{-4} = 16-\frac{1}{16} = 15.9375\)
LIST I | LIST II | ||
A. | Range of y=cosec-1x | I. | R-(-1, 1) |
B. | Domain of sec-1x | II. | (0, π) |
C. | Domain of sin-1x | III. | [-1, 1] |
D. | Range of y=cot-1x | IV. | \([\frac{-π}{2},\frac{π}{2}]\)-{0} |