Given that \( f(x) = x + \frac{1}{x} \), we want to prove the following:
\[
\left( f(x) \right)^3 = f(x^3) + 3f\left( \frac{1}{x} \right)
\]
First, calculate \( f(x)^3 \):
\[
f(x) = x + \frac{1}{x}
\]
\[
f(x)^3 = \left( x + \frac{1}{x} \right)^3 = x^3 + 3x + 3\frac{1}{x} + \frac{1}{x^3}
\]
Now, calculate \( f(x^3) \) and \( f\left( \frac{1}{x} \right) \):
\[
f(x^3) = x^3 + \frac{1}{x^3}
\]
\[
f\left( \frac{1}{x} \right) = \frac{1}{x} + x
\]
Now, substitute these into the right-hand side of the equation:
\[
f(x^3) + 3f\left( \frac{1}{x} \right) = \left( x^3 + \frac{1}{x^3} \right) + 3 \left( \frac{1}{x} + x \right)
\]
Simplifying the right-hand side:
\[
= x^3 + \frac{1}{x^3} + 3x + \frac{3}{x}
\]
This is exactly the same as \( f(x)^3 \).
Final Answer:
Thus, we have proven that:
\[
f(x)^3 = f(x^3) + 3f\left( \frac{1}{x} \right)
\]