Find \( x \) such that \( f(x) = -3 \):
\[ x^5 + 2x - 3 = -3 \Rightarrow x^5 + 2x = 0 \Rightarrow x (x^4 + 2) = 0 \Rightarrow x = 0. \] Check: \( f(0) = 0^5 + 2 \cdot 0 - 3 = -3 \). So, \( f^{-1}(-3) = 0 \).
Derivative of inverse: \( (f^{-1})'(y) = \frac{1}{f'(x)} \) where \( y = f(x) \).
\[ f'(x) = 5x^4 + 2, f'(0) = 5 \cdot 0 + 2 = 2. \] \[ (f^{-1})'(-3) = \frac{1}{f'(0)} = \frac{1}{2}. \] Answer: \( \frac{1}{2} \).
Let \( f: \mathbb{R} \to \mathbb{R} \) \(\text{ be any function defined as }\) \[ f(x) = \begin{cases} x^\alpha \sin \left( \frac{1}{x^\beta} \right) & \text{for } x \neq 0, \\ 0 & \text{for } x = 0, \end{cases} \] where \( \alpha, \beta \in \mathbb{R} \). Which of the following is true? \( \mathbb{R} \) denotes the set of all real numbers.