Question:

If \( f(x) = |\tan 2x| \), then find the value of \( f'(x) \) at \( x = \frac{\pi}{3} \).

Show Hint

For absolute value functions, differentiate separately for positive and negative cases of the argument.
Updated On: Jan 27, 2025
Hide Solution
collegedunia
Verified By Collegedunia

Solution and Explanation

Step 1: Differentiate \( f(x) = |\tan 2x| \).
The absolute value function \( |u| \) is defined as: \[ |u| = \begin{cases} u, & u>0,
-u, & u<0. \end{cases} \] For \( f(x) = |\tan 2x| \), the derivative is: \[ f'(x) = \begin{cases} \frac{d}{dx} (\tan 2x), & \tan 2x>0,
\frac{d}{dx} (-\tan 2x), & \tan 2x<0. \end{cases} \] This simplifies to: \[ f'(x) = \begin{cases} 2 \sec^2 2x, & \tan 2x>0,
-2 \sec^2 2x, & \tan 2x<0. \end{cases} \] Step 2: Evaluate \( \tan 2x \) at \( x = \frac{\pi}{3} \).
At \( x = \frac{\pi}{3} \): \[ \tan 2x = \tan \left(2 \cdot \frac{\pi}{3}\right) = \tan \frac{2\pi}{3}. \] Since \( \tan \frac{2\pi}{3} = -\sqrt{3} \), we have \( \tan 2x<0 \) at \( x = \frac{\pi}{3} \). Step 3: Substitute into \( f'(x) \).
For \( \tan 2x<0 \), the derivative is: \[ f'(x) = -2 \sec^2 2x. \] At \( x = \frac{\pi}{3} \), calculate \( \sec^2 2x \): \[ \sec 2x = \sec \frac{2\pi}{3} = -\sec \frac{\pi}{3} = -2 \quad \Rightarrow \quad \sec^2 2x = (-2)^2 = 4. \] Thus: \[ f'(x) = -2 \cdot 4 = -8. \] Step 4: Conclusion.
The value of \( f'(x) \) at \( x = \frac{\pi}{3} \) is: \[ \boxed{-8}. \]
Was this answer helpful?
0
0