Step 1: Differentiate \( f(x) = |\tan 2x| \).
The absolute value function \( |u| \) is defined as:
\[
|u| = \begin{cases}
u, & u>0,
-u, & u<0.
\end{cases}
\]
For \( f(x) = |\tan 2x| \), the derivative is:
\[
f'(x) = \begin{cases}
\frac{d}{dx} (\tan 2x), & \tan 2x>0,
\frac{d}{dx} (-\tan 2x), & \tan 2x<0.
\end{cases}
\]
This simplifies to:
\[
f'(x) = \begin{cases}
2 \sec^2 2x, & \tan 2x>0,
-2 \sec^2 2x, & \tan 2x<0.
\end{cases}
\]
Step 2: Evaluate \( \tan 2x \) at \( x = \frac{\pi}{3} \).
At \( x = \frac{\pi}{3} \):
\[
\tan 2x = \tan \left(2 \cdot \frac{\pi}{3}\right) = \tan \frac{2\pi}{3}.
\]
Since \( \tan \frac{2\pi}{3} = -\sqrt{3} \), we have \( \tan 2x<0 \) at \( x = \frac{\pi}{3} \).
Step 3: Substitute into \( f'(x) \).
For \( \tan 2x<0 \), the derivative is:
\[
f'(x) = -2 \sec^2 2x.
\]
At \( x = \frac{\pi}{3} \), calculate \( \sec^2 2x \):
\[
\sec 2x = \sec \frac{2\pi}{3} = -\sec \frac{\pi}{3} = -2 \quad \Rightarrow \quad \sec^2 2x = (-2)^2 = 4.
\]
Thus:
\[
f'(x) = -2 \cdot 4 = -8.
\]
Step 4: Conclusion.
The value of \( f'(x) \) at \( x = \frac{\pi}{3} \) is:
\[
\boxed{-8}.
\]