If \( f(x) = \sin(\tan^{-1} x) \), then \( \int_0^1 xf''(x)dx = \)
Show Hint
Simplify \(f(x) = \sin(\tan^{-1} x)\) using a right-angled triangle. If \(\tan\theta = x/1\), then hypotenuse is \(\sqrt{x^2+1}\), so \(\sin\theta = x/\sqrt{x^2+1}\).
Use integration by parts: \( \int u dv = uv - \int v du \). Choose \(u=x\) and \(dv=f''(x)dx\).
Carefully calculate derivatives and evaluate at the limits.