Step 1: Differentiating the function.
The given function is \( f(x) = \log(\sec x + \tan x) \). We differentiate it using the chain rule:
\[
f'(x) = \frac{d}{dx} \log(\sec x + \tan x) = \frac{1}{\sec x + \tan x} \cdot \frac{d}{dx} (\sec x + \tan x)
\]
We know that \( \frac{d}{dx} \sec x = \sec x \tan x \) and \( \frac{d}{dx} \tan x = \sec^2 x \), so:
\[
f'(x) = \frac{1}{\sec x + \tan x} \cdot (\sec x \tan x + \sec^2 x)
\]
Step 2: Evaluating the derivative at \( x = \frac{\pi}{4} \).
At \( x = \frac{\pi}{4} \), \( \sec \frac{\pi}{4} = \sqrt{2} \) and \( \tan \frac{\pi}{4} = 1 \). Substituting these values into the derivative:
\[
f'\left( \frac{\pi}{4} \right) = \frac{1}{\sqrt{2} + 1} \cdot \left( \sqrt{2} \times 1 + 2 \right)
\]
After simplifying, we find that \( f'\left( \frac{\pi}{4} \right) = \sqrt{2} \).
Step 3: Conclusion.
Thus, \( f'\left( \frac{\pi}{4} \right) = \sqrt{2} \), which makes option (D) the correct answer.