Using the given function and properties of logarithms:
\[
f(x) + f(y) = \log \left(\frac{(1+x)}{(1-x)}\right) + \log \left(\frac{(1+y)}{(1-y)}\right)
\]
Using the logarithmic property \( \log a + \log b = \log(ab) \), we get:
\[
f(x) + f(y) = \log \left( \frac{(1+x)(1+y)}{(1-x)(1-y)} \right)
\]
Expanding the terms gives:
\[
f(x) + f(y) = \log \left( \frac{(x+y)}{(1+xy)} \right)
\]
Thus, the Correct Answer is \( \frac{(x+y)}{(1+xy)} \).