Question:

If \( f(x) = \log \left(\frac{(1 + x)}{(1 - x)}\right) \), then \( f(x) + f(y) \) is:

Show Hint

When dealing with logarithms, always remember to use the logarithmic identity \( \log a + \log b = \log(ab) \).
Updated On: Aug 4, 2025
  • \( f(x + y) \)
  • \( \frac{(x + y)}{(1 + xy)} \)
  • \( \frac{1}{(1 + xy)} \)
  • \( f(x) + f(y) \)
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Using the given function and properties of logarithms: \[ f(x) + f(y) = \log \left(\frac{(1+x)}{(1-x)}\right) + \log \left(\frac{(1+y)}{(1-y)}\right) \] Using the logarithmic property \( \log a + \log b = \log(ab) \), we get: \[ f(x) + f(y) = \log \left( \frac{(1+x)(1+y)}{(1-x)(1-y)} \right) \] Expanding the terms gives: \[ f(x) + f(y) = \log \left( \frac{(x+y)}{(1+xy)} \right) \] Thus, the Correct Answer is \( \frac{(x+y)}{(1+xy)} \).
Was this answer helpful?
0
0