Solution:
A function \( f(x) \) is continuous at \( x = a \) if and only if
\[ \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = f(a). \]
In this case,
\[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \left( \frac{8}{x^3} - 6x \right) = \frac{8}{1^3} - 6 \cdot 1 = 8 - 6 = 2, \]
and
\[ \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{x - 1}{\sqrt{x} - 1} = \lim_{x \to 1^+} \frac{(\sqrt{x} - 1)(\sqrt{x} + 1)}{\sqrt{x} - 1} = \lim_{x \to 1^+} (\sqrt{x} + 1) = \sqrt{1} + 1 = 2, \]
and \( f(1) = \frac{8}{1^3} - 6 \cdot 1 = 2 \), so \( f \) is continuous at \( x = 1 \).
For \( x \leq 1 \),
\[ f'(x) = - \frac{24}{x^4} - 6, \]
and for \( x > 1 \),
\[ f'(x) = \frac{(\sqrt{x} - 1) - (x - 1) \cdot \frac{1}{2 \sqrt{x}}}{(\sqrt{x} - 1)^2} = \frac{2x - 2 \sqrt{x} - x + \sqrt{x}}{2 \sqrt{x} (\sqrt{x} - 1)^2} = \frac{x - \sqrt{x}}{2 \sqrt{x} (\sqrt{x} - 1)^2} = \frac{\sqrt{x} (\sqrt{x} - 1)}{2 \sqrt{x} (\sqrt{x} - 1)^2} = \frac{1}{2 (\sqrt{x} - 1)}. \]
Match the following: