Question:

If \( f(x) \) is given as: \[ f(x) = \begin{cases} \frac{8}{x^3} - 6x, & \text{if } 0 < x \leq 1 \\ \frac{x - 1}{\sqrt{x}-1}, & \text{if } x > 1 \end{cases} \] is a real-valued function, then at \( x = 1 \), \( f \) is:

Show Hint

To check differentiability, compute left-hand and right-hand derivatives separately.
Updated On: Mar 12, 2025
  • Continuous and differentiable
  • Continuous but not differentiable
  • Neither continuous nor differentiable
  • Differentiable but not continuous
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

Solution:

A function \( f(x) \) is continuous at \( x = a \) if and only if

\[ \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = f(a). \]

In this case,

\[ \lim_{x \to 1^-} f(x) = \lim_{x \to 1^-} \left( \frac{8}{x^3} - 6x \right) = \frac{8}{1^3} - 6 \cdot 1 = 8 - 6 = 2, \]

and

\[ \lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} \frac{x - 1}{\sqrt{x} - 1} = \lim_{x \to 1^+} \frac{(\sqrt{x} - 1)(\sqrt{x} + 1)}{\sqrt{x} - 1} = \lim_{x \to 1^+} (\sqrt{x} + 1) = \sqrt{1} + 1 = 2, \]

and \( f(1) = \frac{8}{1^3} - 6 \cdot 1 = 2 \), so \( f \) is continuous at \( x = 1 \).

For \( x \leq 1 \),

\[ f'(x) = - \frac{24}{x^4} - 6, \]

and for \( x > 1 \),

\[ f'(x) = \frac{(\sqrt{x} - 1) - (x - 1) \cdot \frac{1}{2 \sqrt{x}}}{(\sqrt{x} - 1)^2} = \frac{2x - 2 \sqrt{x} - x + \sqrt{x}}{2 \sqrt{x} (\sqrt{x} - 1)^2} = \frac{x - \sqrt{x}}{2 \sqrt{x} (\sqrt{x} - 1)^2} = \frac{\sqrt{x} (\sqrt{x} - 1)}{2 \sqrt{x} (\sqrt{x} - 1)^2} = \frac{1}{2 (\sqrt{x} - 1)}. \]

 

Was this answer helpful?
0
0