Step 1: Calculate the probability.
The probability \( P(|X|<2) \) is the area under the p.d.f. from \( -2 \) to \( 2 \).
\[
P(|X|<2) = \int_{-2}^{2} \frac{x^2 + 2}{18} \, dx
\]
Step 2: Integrate the function.
First, calculate the integral of \( \frac{x^2 + 2}{18} \) over the interval \( [-2, 2] \):
\[
\int_{-2}^{2} \frac{x^2 + 2}{18} \, dx = \frac{1}{18} \left[ \int_{-2}^{2} x^2 \, dx + \int_{-2}^{2} 2 \, dx \right]
\]
After integrating, we get \( \frac{4}{9} \).
Step 3: Conclusion.
The correct answer is (B) \( \frac{4}{9} \).