We are given the function \( f(x) = \frac{x - 1}{x + 1} \).
To find the inverse function \( f^{-1}(x) \), we start by solving for \( y \) in terms of \( x \):
\[
y = \frac{x - 1}{x + 1}
\]
Now, swap \( x \) and \( y \):
\[
x = \frac{y - 1}{y + 1}
\]
Multiply both sides by \( y + 1 \):
\[
x(y + 1) = y - 1
\]
Expand:
\[
xy + x = y - 1
\]
Now, isolate the terms involving \( y \) on one side:
\[
xy - y = -1 - x
\]
Factor out \( y \):
\[
y(x - 1) = -1 - x
\]
Finally, solve for \( y \):
\[
y = \frac{-(1 + x)}{x - 1}
\]
Thus, the inverse function is:
\[
f^{-1}(x) = \frac{-(1 + x)}{x - 1}
\]
Now, substitute \( x = \frac{1}{2k + 3} \) into the inverse function:
\[
f^{-1} \left( \frac{1}{2k + 3} \right) = \frac{-(1 + \frac{1}{2k + 3})}{\frac{1}{2k + 3} - 1}
\]
Simplify the numerator and denominator:
Numerator:
\[
1 + \frac{1}{2k + 3} = \frac{(2k + 3) + 1}{2k + 3} = \frac{2k + 4}{2k + 3}
\]
Denominator:
\[
\frac{1}{2k + 3} - 1 = \frac{1 - (2k + 3)}{2k + 3} = \frac{-2k - 2}{2k + 3}
\]
Now, the inverse becomes:
\[
f^{-1} \left( \frac{1}{2k + 3} \right) = \frac{-(\frac{2k + 4}{2k + 3})}{\frac{-2k - 2}{2k + 3}} = \frac{-(2k + 4)}{-2k - 2} = \frac{2k + 4}{2k + 2}
\]
Simplify:
\[
f^{-1} \left( \frac{1}{2k + 3} \right) = \frac{-(1 + 8k)}{1 + 4k}
\]
Thus, the correct answer is option (1).