Let \( M \) and \( m \) respectively be the maximum and the minimum values of \( f(x) = \begin{vmatrix} 1 + \sin^2x & \cos^2x & 4\sin4x \\ \sin^2x & 1 + \cos^2x & 4\sin4x \\ \sin^2x & \cos^2x & 1 + 4\sin4x \end{vmatrix}, \quad x \in \mathbb{R} \) for \( x \in \mathbb{R} \). Then \( M^4 - m^4 \) is equal to:
The equation of a circle which touches the straight lines $x + y = 2$, $x - y = 2$ and also touches the circle $x^2 + y^2 = 1$ is:
The product of perpendiculars from the two foci of the ellipse $$ \frac{x^2}{9} + \frac{y^2}{25} = 1 $$ on the tangent at any point on the ellipse is: