(-4,9)
(-4,3)
The given function is:
\[ f(x) = \begin{cases} 3x + 2, & \text{if } x < -2 \\ x^2 - 3x - 1, & \text{if } x \geq -2 \end{cases} \]
We need to find the limits:
Left-hand limit: \( \lim_{x \to 2^-} f(x) \)
For \( x \to 2^- \), we use the second part of the piecewise function, \( f(x) = x^2 - 3x - 1 \), because \( x \geq -2 \).
Substituting \( x = 2 \) into the equation:
\[ f(2) = 2^2 - 3(2) - 1 = 4 - 6 - 1 = -3 \]
Thus, \( \lim_{x \to 2^-} f(x) = -3 \).
Right-hand limit: \( \lim_{x \to 2^+} f(x) \)
For \( x \to 2^+ \), we again use the second part of the piecewise function, \( f(x) = x^2 - 3x - 1 \), because \( x \geq -2 \).
Substituting \( x = 2 \) into the equation:
\[ f(2) = 2^2 - 3(2) - 1 = 4 - 6 - 1 = -3 \]
Thus, \( \lim_{x \to 2^+} f(x) = -3 \).
Conclusion: The left-hand limit and right-hand limit are both \( -3 \). Therefore, the correct answer is:
(-4, 3)