Step 1: Ensure differentiability of \( f(x) \) at \( x = 3 \).
For \( f(x) \) to be differentiable at \( x = 3 \), it must be continuous and the derivatives from both sides must be equal.
Continuity at \( x = 3 \):
Left-hand limit (\( x<3 \)):
\[
f(3^-) = a(3)^2 - b(3) + 2 = 9a - 3b + 2
\]
Right-hand limit (\( x \geq 3 \)):
\[
f(3^+) = b(3) - 3 = 3b - 3
\]
Equate for continuity:
\[
9a - 3b + 2 = 3b - 3 \implies 9a - 6b + 5 = 0 \quad (1)
\]
Differentiability at \( x = 3 \):
Left-hand derivative:
\[
f'(x) = \frac{d}{dx} (ax^2 - bx + 2) = 2ax - b \implies f'(3^-) = 2a(3) - b = 6a - b
\]
Right-hand derivative:
\[
f'(x) = \frac{d}{dx} (bx - 3) = b \implies f'(3^+) = b
\]
Equate the derivatives:
\[
6a - b = b \implies 6a - 2b = 0 \implies 3a - b = 0 \implies b = 3a \quad (2)
\]
Solve equations (1) and (2): Substitute \( b = 3a \) into (1):
\[
9a - 6(3a) + 5 = 0 \implies 9a - 18a + 5 = 0 \implies -9a + 5 = 0 \implies a = \frac{5}{9}
\]
Then:
\[
b = 3a = 3 \cdot \frac{5}{9} = \frac{15}{9} = \frac{5}{3}
\]
So, \( a = \frac{5}{9} \), \( b = \frac{5}{3} \).
Step 2: Find the area of the triangle formed by the line \(\frac{x}{a} + \frac{y}{b} = 1\).
The line intersects the x-axis (\( y = 0 \)) at:
\[
\frac{x}{a} = 1 \implies x = a
\]
It intersects the y-axis (\( x = 0 \)) at:
\[
\frac{y}{b} = 1 \implies y = b
\]
The vertices of the triangle are \((0, 0)\), \((a, 0)\), and \((0, b)\). The area of a right triangle with legs \( a \) and \( b \) is:
\[
\text{Area} = \frac{1}{2} \cdot a \cdot b
\]
Substitute \( a = \frac{5}{9} \), \( b = \frac{5}{3} \):
\[
\text{Area} = \frac{1}{2} \cdot \frac{5}{9} \cdot \frac{5}{3} = \frac{1}{2} \cdot \frac{25}{27} = \frac{25}{54}
\]
Final Answer:
\[
\boxed{2}
\]