Step 1: Compute \( [F(x)]^2 \).
The given matrix \( F(x) \) is: \[ F(x) = \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}. \] Using matrix multiplication: \[ [F(x)]^2 = F(x) \cdot F(x). \] Perform the multiplication: \[ \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \cos x & -\sin x & 0 \\ \sin x & \cos x & 0 \\ 0 & 0 & 1 \end{bmatrix}. \] The resulting matrix is: \[ [F(x)]^2 = \begin{bmatrix} \cos(2x) & -\sin(2x) & 0 \\ \sin(2x) & \cos(2x) & 0 \\ 0 & 0 & 1 \end{bmatrix}. \] Step 2: Compare with \( F(kx) \).
The matrix \( F(kx) \) is: \[ F(kx) = \begin{bmatrix} \cos(kx) & -\sin(kx) & 0 \\ \sin(kx) & \cos(kx) & 0 \\ 0 & 0 & 1 \end{bmatrix}. \] From the condition \( [F(x)]^2 = F(kx) \), we compare: \[ \cos(2x) = \cos(kx) \quad \text{and} \quad \sin(2x) = \sin(kx). \] This implies \( kx = 2x \), so \( k = 2 \).
Step 3: Conclusion.
The value of \( k \) is: \[ \boxed{2}. \]
Let $ A = \begin{bmatrix} 2 & 2 + p & 2 + p + q \\4 & 6 + 2p & 8 + 3p + 2q \\6 & 12 + 3p & 20 + 6p + 3q \end{bmatrix} $ If $ \text{det}(\text{adj}(\text{adj}(3A))) = 2^m \cdot 3^n, \, m, n \in \mathbb{N}, $ then $ m + n $ is equal to:
Consider the balanced transportation problem with three sources \( S_1, S_2, S_3 \), and four destinations \( D_1, D_2, D_3, D_4 \), for minimizing the total transportation cost whose cost matrix is as follows:
where \( \alpha, \lambda>0 \). If the associated cost to the starting basic feasible solution obtained by using the North-West corner rule is 290, then which of the following is/are correct?
Then, which one of the following is TRUE?
The correct IUPAC name of \([ \text{Pt}(\text{NH}_3)_2\text{Cl}_2 ]^{2+} \) is: