Question:

If $ f(x)=\int_{1}^{x}{\sqrt{4-{{t}^{2}}}}\,\,\,dt, $ then real roots of the equation $ x-f'(x)=0 $ are

Updated On: Aug 23, 2023
  • $ \pm \,\,1 $
  • \(\pm \,\,\sqrt{2}\)

  • $ 0 $ and $ 1 $
  • $ \pm \,\,2 $
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is B

Solution and Explanation

The correct option is(B): ±√2.

Given, \(f(x)=\int_{1}^{x}{\sqrt{4-{{t}^{2}}}}\,\,dt\) 
On differentiating w. r. t. x, we get 
\(f'(x)=\sqrt{4-{{x}^{2}}}\) (1) 
\(\therefore\) \(x-f'(x)=x-\sqrt{4-{{x}^{2}}}=0\)
\(\Rightarrow\) \(x=\sqrt{4-{{x}^{2}}}\)
\(\Rightarrow\) \({{x}^{2}}=4-{{x}^{2}}\)
\(\Rightarrow\) \(2{{x}^{2}}=4\)
\(\Rightarrow\) \({{x}^{2}}=2\)
\(\Rightarrow\) \(x=\pm 2\) 
Hence, real roots of 
\(\{x-f'(x)\}\) and \(\pm \sqrt{2}\) .

Was this answer helpful?
0
0

Concepts Used:

Integrals of Some Particular Functions

There are many important integration formulas which are applied to integrate many other standard integrals. In this article, we will take a look at the integrals of these particular functions and see how they are used in several other standard integrals.

Integrals of Some Particular Functions:

  • ∫1/(x2 – a2) dx = (1/2a) log|(x – a)/(x + a)| + C
  • ∫1/(a2 – x2) dx = (1/2a) log|(a + x)/(a – x)| + C
  • ∫1/(x2 + a2) dx = (1/a) tan-1(x/a) + C
  • ∫1/√(x2 – a2) dx = log|x + √(x2 – a2)| + C
  • ∫1/√(a2 – x2) dx = sin-1(x/a) + C
  • ∫1/√(x2 + a2) dx = log|x + √(x2 + a2)| + C

These are tabulated below along with the meaning of each part.