Step 1: Use the given formula \( f_n(x) = \frac{1{2n}(\sin^{2n}x + \cos^{2n}x) \).}
We evaluate each term separately:
\[
f_1(x) = \frac{1}{2}(\sin^2x + \cos^2x) = \frac{1}{2}(1) = \frac{1}{2}
\]
\[
f_2(x) = \frac{1}{4}(\sin^4x + \cos^4x)
\]
Now use the identity: \( \sin^4x + \cos^4x = 1 - \frac{1}{2}\sin^22x \), and the average value of \( \sin^22x \) over a period is \( \frac{1}{2} \), so:
\[
\sin^4x + \cos^4x = 1 - \frac{1}{2} \cdot \frac{1}{2} = \frac{3}{4}
\Rightarrow f_2(x) = \frac{1}{4} \cdot \frac{3}{4} = \frac{3}{16}
\]
\[
f_3(x) = \frac{1}{6}(\sin^6x + \cos^6x)
\]
Use identity:
\[
\sin^6x + \cos^6x = 1 - \frac{3}{4}\sin^2 2x \Rightarrow \text{mean value over a period } = 1 - \frac{3}{4} \cdot \frac{1}{2} = \frac{5}{8}
\Rightarrow f_3(x) = \frac{1}{6} \cdot \frac{5}{8} = \frac{5}{48}
\]
Step 2: Add and subtract the required expressions.
\[
f_1(x) + f_2(x) - f_3(x) = \frac{1}{2} + \frac{3}{16} - \frac{5}{48}
\]
Step 3: Take LCM and simplify.
LCM of 2, 16, and 48 is 48:
\[
= \frac{24}{48} + \frac{9}{48} - \frac{5}{48} = \frac{28}{48} = \frac{7}{12}
\]