We are given the following information:
\[ f(1) = 1 \quad \text{and} \quad f'(1) = 3 \]
Let's break down the expression step by step.
First, consider the term \(f(f(f(x)))\). Using the chain rule, the derivative of \(f(f(f(x)))\) with respect to \(x\) is:
\[ \frac{d}{dx} \left( f(f(f(x))) \right) = f'(f(f(x))) \cdot f'(f(x)) \cdot f'(x) \]
Now, let's evaluate this at \(x = 1\):
\[ \left. \frac{d}{dx} \left( f(f(f(x))) \right) \right|_{x=1} = f'(f(f(1))) \cdot f'(f(1)) \cdot f'(1) \]
Since \(f(1) = 1\), we have:
\[ \left. \frac{d}{dx} \left( f(f(f(x))) \right) \right|_{x=1} = f'(f(f(1))) \cdot f'(f(1)) \cdot 3 \]
Next, consider the term \((f(x))^2\). The derivative of \((f(x))^2\) with respect to \(x\) is:
\[ \frac{d}{dx} \left( (f(x))^2 \right) = 2 \cdot f(x) \cdot f'(x) \]
Now, let's evaluate this at \(x = 1\):
\[ \left. \frac{d}{dx} \left( (f(x))^2 \right) \right|_{x=1} = 2 \cdot f(1) \cdot f'(1) \]
Since \(f(1) = 1\) and \(f'(1) = 3\), we have:
\[ \left. \frac{d}{dx} \left( (f(x))^2 \right) \right|_{x=1} = 2 \cdot 1 \cdot 3 = 6 \]
Finally, to find the derivative of the entire expression, we add the derivatives of the two terms:
\[ \left. \frac{d}{dx} \left( f(f(f(x))) + (f(x))^2 \right) \right|_{x=1} = \left. \frac{d}{dx} \left( f(f(f(x))) \right) \right|_{x=1} + \left. \frac{d}{dx} \left( (f(x))^2 \right) \right|_{x=1} \]
\[ = f'(f(f(1))) \cdot f'(f(1)) \cdot 3 + 6 \]
Since \(f(f(1)) = f(1) = 1\), we have:
\[ \left. \frac{d}{dx} \left( f(f(f(x))) + (f(x))^2 \right) \right|_{x=1} = f'(1) \cdot f'(1) \cdot 3 + 6 \]
\[ = 3 \times 3 \times 3 + 6 = 27 + 6 = 33 \]
Therefore, the derivative of \(f(f(f(1))) + (f(1))^2\) is 33, which corresponds to option (C) 33.
Let \[ y = f(f(f(x))) + (f(x))^2 \] Differentiate using chain rule: \[ \frac{dy}{dx} = f'(f(f(x))) \cdot f'(f(x)) \cdot f'(x) + 2f(x)f'(x) \] Given: \[ f(1) = 1,\quad f'(1) = 3 \] Now evaluate each part: - \(f(x) = 1\) at \(x=1\) - \(f(f(x)) = f(1) = 1\) - \(f(f(f(x))) = f(1) = 1\) So, \[ f'(f(f(x))) = f'(1) = 3, \quad f'(f(x)) = f'(1) = 3, \quad f'(x) = f'(1) = 3 \] Now plug in: \[ \frac{dy}{dx} = 3 \cdot 3 \cdot 3 + 2 \cdot 1 \cdot 3 = 27 + 6 = \mathbf{33} \] Therefore, the derivative at \(x = 1\) is 33
Let \(g(x) = f(f(f(x))) + (f(x))^2\). We want to find g'(1).
First, we need to find g'(x) using the chain rule and the power rule:
\(g'(x) = f'(f(f(x))) \cdot f'(f(x)) \cdot f'(x) + 2f(x) \cdot f'(x)\)
Now, evaluate g'(1) using the given values f(1) = 1 and f'(1) = 3:
\(g'(1) = f'(f(f(1))) \cdot f'(f(1)) \cdot f'(1) + 2f(1) \cdot f'(1)\)
\(g'(1) = f'(f(1)) \cdot f'(1) \cdot f'(1) + 2(1) \cdot (3)\)
\(g'(1) = f'(1) \cdot f'(1) \cdot f'(1) + 6\)
\(g'(1) = (3) \cdot (3) \cdot (3) + 6\)
\(g'(1) = 27 + 6\)
\(g'(1) = 33\)
Therefore, the derivative of \(f(f(f(x))) + (f(x))^2\) at x=1 is 33.
Answer: 33
List - I | List - II | ||
(P) | If a = 0, b = 1, c = 0 and d = 0, then | (1) | h is one-one. |
(Q) | If a = 1, b = 0, c = 0 and d = 0, then | (2) | h is onto. |
(R) | If a = 0, b = 0, c = 1 and d = 0, then | (3) | h is differentiable on \(\R\) |
(S) | If a = 0, b = 0, c = 0 and d = 1, then | (4) | the range of h is [0, 1]. |
(5) | the range of h is {0, 1}. |
Let \( f(x) = \sqrt{4 - x^2} \), \( g(x) = \sqrt{x^2 - 1} \). Then the domain of the function \( h(x) = f(x) + g(x) \) is equal to:
You are given a dipole of charge \( +q \) and \( -q \) separated by a distance \( 2l \). A sphere 'A' of radius \( R \) passes through the centre of the dipole as shown below and another sphere 'B' of radius \( 2R \) passes through the charge \( +q \). Then the electric flux through the sphere A is