Given:
\(f(1) = 1\)
\(f'(1) = 3\)
Let's break down the expression step by step.
First, let's consider the term \(f(f(f(x)))\). Using the chain rule, the derivative of \(f(f(f(x)))\) with respect to x is:
\(\frac{d}{dx} \left( f(f(f(x))) \right) = f'(f(f(x))) \cdot f'(f(x)) \cdot f'(x)\)
Now, let's evaluate this at x = 1:
\(\left. \frac{d}{dx} \left( f(f(f(x))) \right) \right|_{x=1} = f'(f(f(1))) \cdot f'(f(1)) \cdot f'(1)\)
Since \(f(1) = 1\), we have:
\(\left. \frac{d}{dx} \left( f(f(f(x))) \right) \right|_{x=1} = f'(f(f(1))) \cdot f'(f(1)) \cdot 3\)
Next, let's consider the term \((f(x))^2\). The derivative of \((f(x))^2\) with respect to x is:
\(\frac{d}{dx} \left( (f(x))^2 \right) = 2 \cdot f(x) \cdot f'(x)\)
Now, let's evaluate this at x = 1:
\(\left. \frac{d}{dx} \left( (f(x))^2 \right) \right|_{x=1} = 2 \cdot f(1) \cdot f'(1)\)
Since \(f(1) = 1\) and \(f'(1) = 3\), we have:
\(\left. \frac{d}{dx} \left( (f(x))^2 \right) \right|_{x=1} = 2 \cdot 1 \cdot 3 = 6\)
Finally, to find the derivative of the entire expression, we add the derivatives of the two terms:
\(\left. \frac{d}{dx} \left( f(f(f(x))) + (f(x))^2 \right) \right|_{x=1} = \left. \frac{d}{dx} \left( f(f(f(x))) \right) \right|_{x=1} + \left. \frac{d}{dx} \left( (f(x))^2 \right) \right|_{x=1}\)
= \(f'(f(f(1))) \cdot f'(f(1)) \cdot 3 + 6\)
Since \(f(f(1)) = f(1) = 1,\) we have:
\(\left. \frac{d}{dx} \left( f(f(f(x))) + (f(x))^2 \right) \right|_{x=1} = f'(1) \cdot f'(1) \cdot 3 + 6\)
\(=3 \times 3 \times 3 + 6\)
\(= 27 + 6\)
\(= 33\)
Therefore, the derivative of \(f(f(f(1))) + (f(1))^2\) is 33, which corresponds to option (C) 33.
List - I | List - II | ||
(P) | If a = 0, b = 1, c = 0 and d = 0, then | (1) | h is one-one. |
(Q) | If a = 1, b = 0, c = 0 and d = 0, then | (2) | h is onto. |
(R) | If a = 0, b = 0, c = 1 and d = 0, then | (3) | h is differentiable on \(\R\) |
(S) | If a = 0, b = 0, c = 0 and d = 1, then | (4) | the range of h is [0, 1]. |
(5) | the range of h is {0, 1}. |