For a diatomic gas, the molar heat capacities at constant volume (\(C_V\)) and constant pressure (\(C_P\)) are:
\[
C_V = \frac{5}{2}R, \quad C_P = \frac{7}{2}R
\]
From the First Law of Thermodynamics:
\[
dQ = dU + dW
\]
1. Change in Internal Energy:
\[
dU = n C_V \Delta T = \frac{5}{2} nR \Delta T
\]
2. Work Done:
\[
dW = P dV = n R \Delta T
\]
3. Heat Supplied:
\[
dQ = n C_P \Delta T = \frac{7}{2} nR \Delta T
\]
Now, taking the ratio:
\[
dW : dU : dQ = 1 : \frac{5}{2} : \frac{7}{2}
\]
Multiplying by 2 for integer values:
\[
2:5:7
\]
Thus, the correct answer is \(\boxed{2:5:7}\).