Step 1: Use Vieta's formulas
Let the roots be \( \alpha = \csc\theta \), \( \beta = \cot\theta \)
Sum of roots: \( \alpha + \beta = -\frac{b}{c} \)
Product of roots: \( \alpha\beta = \frac{a}{c} \)
Step 2: Use identity
We know:
\[
\csc^2\theta - \cot^2\theta = 1 \Rightarrow (\csc\theta + \cot\theta)(\csc\theta - \cot\theta) = 1
\]
This helps relate terms but a key insight is to assume identities and solve using discriminant \( D = b^2 - 4ac \), then compute:
\[
b^2(b^2 - 4ac) = c^4
\]