Step 1: Recall the identity.
\[
\cot \theta = \tan (90^\circ - \theta)
\]
So,
\[
\tan (A - 22^\circ) = \cot 2A = \tan (90^\circ - 2A)
\]
Step 2: Equate the angles.
\[
A - 22^\circ = 90^\circ - 2A
\]
Step 3: Simplify.
\[
3A = 112^\circ \implies A = \frac{112^\circ}{3} = 37^\circ 20'
\]
Step 4: Conclusion.
Hence, the value of \(A\) is \(\boxed{37^\circ 20'}\).